
2 CROSSTALK The Journal of Defense Software Engineering August 1998

From the Publisher

In the May 1998 issue of CROSSTALK, there is a reprint of
an Executive Order titled, “Year 2000 Conversion.” I am
writing to ask CROSSTALK readers if any of you have found an
Ada Year 2000 bug, and if so, how much effort did it take to
correct? I offer free pizza to the first three bug finders re-
sponding to this request who show up for a San Diego
SigAda meeting prior to the year 2000.

Robert C. Leif, Chairman
ACM San Diego SigAda

Voice and Fax: 619-582-0437
E-mail: rleif@rleif.com

We enjoy your magazine. It is handed out as a resource to
every Systems Automation Course student in the software
engineering block of instruction, and many of them research
further topics they find in your articles.

Avery McConnell
U.S. Army Computer Science School

Fort Gordon, Ga.

Free Pizza for Ada Bugs CROSSTALK Useful Classroom Resource

Letters to the Editor

Most people use mea-
surements and metrics
every day. They are so
ingrained in our nor-
mal way of doing
things that we often
do not realize we are

using them. When we drive our car, we
watch the gauges, especially the gas, to
make sure everything is all right. When
we prepare for a vacation and a long
drive, we may check the oil and tire
pressure to make sure we are not going
to have any problems.

While following a recipe, we measure
the ingredients and make sure the tem-
perature of the oven is within the correct
thresholds.

Women expecting babies go to their
doctor on a regular basis to monitor how
things are progressing. My doctor per-
forms an ultrasound on me every
month. During the ultrasound, he mea-
sures the length of the femur, the diam-
eter of the head, and the diameter of the
belly. He uses all of these measurements
to ensure the baby is progressing as ex-
pected. The medical staff also checks my
weight each visit to determine if I am
gaining the right amount of weight.
There are also blood tests taken at peri-
odic intervals to check for other prob-
lems (Downs syndrome, diabetes, etc.)
and prepare for them.

We even measure how the day is
progressing. How many of you are wear-
ing a watch right now? We measure how
the day is progressing and plan our ac-
tions accordingly. Have you called your
spouse to say that you will be later than
usual?

Do you make a list of necessities
before going to the store so you don’t
spend more money than you wanted?
Have you set a budget?

In the long run, software measure-
ments will make our lives easier. Monitor-
ing our progress on a project lets us know
when we need to begin corrective action.
It also lets us know if things are progress-
ing better than expected, so there is room
for experimenting with potential im-
provements. We set thresholds in advance
to aid with determining when those ac-
tions should be taken. Measurements are
not a cure-all. We may still find problems
that cannot be fixed with advance warn-
ing, but knowing about these problems
before delivery will help the developer
and the customer decide together how to
best deal with them.

I was wondering why so many soft-
ware measurement efforts fail when mea-
surement is so much a part of our every-
day life. As I was trying to tie the two
concepts together and determine why
there would be a difference, it occurred to

me that there is no difference. How many
times do people get stranded along the
road because they did not check their gas
gauge? Maybe they were checking it but
failed to heed its warning. Have you ever
seen signs that your project was in trouble
but just held onto the belief that you
would remedy things down the road?
How many people do not follow a recipe,
and it turns out awful? How many people
are afraid to go to the doctor because they
think there might be something wrong
and do not want to know? How many
people set budgets and overspend any-
way? Are you consistently $50 over bud-
get every month but continue to believe
you will spend less next month?

Perhaps the most frustrating situa-
tions are those in which people believe
they will get different results without
changing what they do. Deciding to
implement and then institutionalize a
measurement system seems essential to
improvement. All of the old clichés
apply. That is how they got to be old
clichés. “If you do not know where you
are, a map will not help” or “That
which you cannot measure you cannot
manage.” Every organization, and per-
haps every person, needs to begin to
measure and then pay attention to what
the data is telling them. I, for one, have
never enjoyed the highway in the desert
on foot. u

Measurement Is Nothing New
Elizabeth C. L. Starrett (Guest Writer)

Software Technology Support Center

CROSSTALK The Journal of Defense Software Engineering 3August 1998

According to retired Col. John
A. Warden III (U.S. Air Force),
 leadership is the key to success or

failure in war, and as such, every action
taken in a war should be geared to di-
rectly or indirectly affect the enemy’s
leadership [1]. Given the phenomenal
success of Warden’s “Instant Thunder”
plan employed in the Gulf War, this
theory has been proven in battle.

Warden’s basic premise is that mod-
ern nation-states exist as a “system” that
consists of five concentric rings or “cen-
ters of gravity.” The innermost ring is
“leadership” and (moving outward) is
followed by “key production,” “infra-
structure,” “population,” and finally the
outermost ring is “fielded military
forces.” Because the nation-state operates
as a system, each of the centers of gravity
is dependent on the others for the sur-
vival of the system. Each center of grav-
ity is also directly or indirectly affected
by the health and status of the others.

Warden asserts that leadership is the
key to success or failure in war because
when a nation has endured enough pain
inflicted through conflict, the leader will
sue for peace or lose power. In other
words, the cost for continued resistance
and conflict is greater than the conse-
quences faced by laying down arms. He
also states that prior to the ascendancy of
air power, the only way to directly influ-
ence a nation-state’s leadership was to
first engage and destroy the enemy’s
fielded military forces. Only then were
the other centers of gravity exposed and
vulnerable. With advanced technology
and superior air power, Warden argues
that all aspects of a nation-state are
equally vulnerable to attack and destruc-
tion from the onset of hostilities [1].

Influence Through Strategic
Paralysis
Warden and his team of planners devised
the Instant Thunder air campaign to
achieve a specific effect called “strategic
paralysis” to strike at the heart of the
enemy’s leadership and bring about a
quick end to the conflict. Strategic pa-
ralysis explains the effects of disconnect-
ing a nation’s leadership from its people
and the fielded military forces. This
would cause a systemic breakdown of
strategically critical functions such as
communications, electricity, distribu-
tion, and other aspects of the national
infrastructure. Instant Thunder success-
fully attacked Iraq’s national leadership
by cutting off Saddam Hussein’s ability
to communicate with his subordinates
and by halting the availability of key
production and infrastructure facilities.

Because the United States is the most
technically dominant nation in the
world, we have the distinct advantage
and capability to deliver strategic paraly-
sis on our enemies while remaining
relatively invulnerable to a reciprocal
attack on our nation. However, by using
advanced technologies, we have become
extremely dependent on those technolo-
gies to perform our missions. Every
aspect of our society and our military is
computerized or automated and there-
fore relies on immediate access to accu-
rate information. Our reliance on tech-
nologies has created built-in vulner-
abilities and threats to our ability to
carry out the mission. We do not have to
worry about strategic paralysis being
inflicted upon us by our enemies, but
our dependence on technology has ex-
posed us to the year 2000 (Y2K) “time
bomb,” which has the potential to inflict
strategic paralysis from within.

Are We Susceptible to Parallel
War?
If the eyes and ears of our nation’s lead-
ers are blinded because of the Y2K prob-
lem, our enemies will have the opportu-
nity to exert influence on U.S. leader-
ship. Without exposing a single asset or
suffering a single casualty of their own,
our enemies will enjoy the benefits of a
direct attack on the U.S. national leader-
ship in the first ring of Warden’s model.

Simple analysis shows that the insidi-
ous nature of the Y2K problem on an
information-based society will attack all
five rings of Warden’s model equally and
simultaneously. Warden points out that
because the concept of “parallel war”
brings many parts of a nation’s system
under simultaneous attack, the system
cannot react to defend or to repair itself
[2]. Not even the greatest military plan-
ners with unlimited military resources
could ever accomplish what could hap-
pen to our nation-state as a result of the
Y2K bomb. Our enemies are watching
our progress on fixing what is potentially
one of our nation’s most significant
threats in history.

History is full of examples in which
the difference between success and fail-
ure in conflict has been determined by
the possession or absence of key infor-
mation at key points in time. Richard
Gabriel declares that the one constant in
the Mayaguez rescue, the Iran raid, the
Lebanon incursion, and the invasion of
Grenada was intelligence failure [3]. The
intelligence mission and every other
military mission we perform is based on
getting the right information to the right
place at the right time. If we cannot
move accurate data in a timely manager
because of the Y2K problem, we put our
mission success at high risk. Likewise,

The Operational Effects of the Year 2000 Problem
Lt. Col. Scott B. Dufaud

U.S. Air Force Year 2000 Program Management Office

Widespread year 2000 problems in military and civilian computer systems have the poten-
tial to open the door to grave consequences for the military and the nation’s security in
general. To prevent giving our enemies advantage over us in the face of potential chaos,
people working in all levels in the nation’s defense infrastructure must understand the nature
of the risks and to fully participate in plans that ensure no weak links are left exposed.

Policy and Management

4 CROSSTALK The Journal of Defense Software Engineering August 1998

MIL-STD-498, dated 5 December 1994, is hereby canceled. Information regarding software development
and documentation is now contained in the Institute of Electrical and Electronics Engineers (IEEE)/Electron-
ics Industries Association (EIA) standard, IEEE/EIA 12207, “Information Technology-Software Life Cycle Pro-
cesses.” IEEE/EIA 12207 is packaged in three parts. The three parts are IEEE/EIA 12207.0, “Standard for
Information Technology – Software Life Cycle Processes”; “IEEE/EIA 12207.1, “Guide for ISO/IEC 12207,
Standard for Information Technology – Software Life Cycle Process – Life Cycle Data”; and IEEE/EIA
12207.2, “Guide for ISO/IEC 12207, Standard for Information Technology – Software Life Cycle Processes –
Implementation Considerations.”

[DoD activities may obtain copies of the IEEE/EIA standards from the Standardization Order Desk, 700
Robbins Avenue, Building 4/D, Philadelphia, PA 19111-5094. The private sector and other government agen-
cies may purchase copies from the Institute of Electrical and Electronics Engineers, Inc., IEEE Service Cen-
ter, 445 Hoes Lane, P.O. Box 1331 Piscataway, NJ 08855-1331.]

Notice of
Cancellation

MIL-STD-498
Notice 1
May 27, 1998

Military Standard
Software Development and

Documentation

Policy and Management

history also shows us that the availability
of accurate and timely intelligence is key
to success. This is what enabled Gen.
George S. Patton to drive his forces with
focused speed: He knew what he could
expect from the enemy, where to send
fuel and ammunition, and when to shift
land and air forces.

Rapid offenses and troop movements
are complex and require massive
amounts of accurate and timely informa-
tion [2]. Our entire command and con-
trol system is based on our ability to
gather, analyze, and disseminate infor-
mation, all through an “infosphere” that
is dependent on technology-based
equipment and systems that are vulner-
able to the Y2K problem. Our ability to
fly hundreds of sorties in a limited air-
space is dependent on real-time commu-
nication with friendly forces over the
Have Quick radio system while denying
our enemies the ability to jam or over-
hear those transmissions. Our ability to
detect and assess enemy missile launches
depends on satellite hardware and soft-
ware, communication links, threat analy-
sis software systems, and then communi-
cation links to end users. Our ability to
launch and complete sorties relies on a
multitude of different software and
hardware systems: air traffic control,
radars, avionics, secure communications,
Global Positioning System, mission
planning systems and equipment, ordi-

nance avionics, automated test equip-
ment, and simulators, to name a few.

All these systems have two things in
common: They process and convey
information to the operator, and they are
controlled to some degree by automated
information technology. Not all are
“date-aware,” but our task is to find out
which ones are and to fix them.

What We Have Done to Date
The U.S. Air Force Y2K effort is being
carried out by two program manage-
ment teams, one at the Air Force Com-
munication and Information Center and
one at the Air Force Communications
Agency. These two teams are supple-
mented by program offices that reside in
each major command (MAJCOM),
Field Operating Agency, and Direct
Reporting Unit that function as an ex-
tension of the headquarters staffs. In
addition, the Air Force has fully en-
gaged the functional staffs, assigning
responsibility for comprehensive inven-
tories Air Force-wide, researching the
compliance information for each item,
and sharing this data within their do-
mains to the commanders they support.

There are over 200 primary Y2K
points of contact Air Force-wide work-
ing full time on this issue. This informa-
tion and more is found on the Air Force
Y2K Web page (http://year2000.af.mil),
which is one of the best and most com-

prehensive resources in the world for
information, guidance, and current
status of our effort. We have an Internet-
hosted on-line, real-time database that
provides instant status and access to all
the over 3,400 systems we are tracking
in the Y2K program. We have created
three different guidance packages to
direct efforts in the field and have
trained over 900 people worldwide in an
Air Force-developed and standardized
certification process. To sum it up, we
have energized the Air Force Y2K effort
by mobilizing the support communities,
thus ensuring their own domains are
squared away for Y2K.

What We Need to Do Now
To date, the communication and infor-
mation and other support communities
have been the “pointy head of the Y2K
spear.” That is, we are solving the Y2K
problem through a process of elimina-
tion—systems we are aware of are identi-
fied and then systematically renovated
through the standard Y2K lifecycle
documented in the Air Force Guidance
Package.

How can we know we have identified
the entire universe of systems—hard-
ware, software, technology-controlled
equipment—that the Air Force depends
on to complete all our missions? We
need to engage the operational commu-
nities at every level to leverage their

CROSSTALK The Journal of Defense Software Engineering 5August 1998

The Operational Effects of the Year 2000 Problem

The Software Specifications Reengineering tool can now be downloaded free of charge from the Com-
puter Command and Control Co. Web site, http://www.cccc.com. It is provided by the Group on Systems
Engineering of the Joint Logistics Commanders and the Software Engineering Directorate of the U.S. Army
Missile Command, in support of reengineering of Department of Defense Systems.

Free Downloadable Tool for Generating Interactive
Documentation for Large-Scale Ada Programs

knowledge of mission processes. This is
the only way to guarantee that all our
critical missions are free from negative
Y2K impacts.

By engaging the operational commu-
nities and the systems they employ to
carry out wartime operations, we can
identify critical mission processes and
components previously missed. We need
to be working off the commander in
chief ’s designated mission-critical systems
listing to ensure that all electronic path-
ways to and from these systems are Y2K
compliant. Because so much of our op-
erational capability is maintained and
executed at contingency sites and de-
ployed locations, Y2K vulnerability analy-
sis needs to be performed on the mission
processes employed there. MAJCOMs
and main operating bases need to ensure
that operational planning processes and
systems that direct and employ forces at
these locations are Y2K ready.

Only through this analysis can we
identify the most critical wartime pro-
cesses and ensure that adequate contin-
gencies have been properly identified
and documented. It is time to make the
operational mission the pointy head of
the spear—we cannot afford to continue
looking at the problem from a purely
functional perspective. We must widen
our scope to look at the entire Air Force
as a whole system to find out where we
are most vulnerable. The bottom line is
that on Jan. 1, 2000, Y2K mission im-
pacts will hinder the commander in
chiefs’ abilities to perform their mis-
sions—it will be too late to do these
things that we should be doing now.

The Y2K problem is not just a com-
munication problem—its an Air Force
mission problem. The program manage-

ment office here at Scott Air Force Base
encourages everybody to look at their
jobs and their units’ missions from a
Y2K perspective. How will it affect your
duties and ability to support the mis-
sion? How will if affect your unit’s abil-
ity to perform its mission? Find out what
is being done at your unit and then take
appropriate actions to raise issues and
contribute to the solution. The Air Force
relies on every person so that it can be
the greatest air and space force in his-
tory; the way we must handle the Y2K
problem is no different. Our success
depends on having every individual take
personal responsibility for Y2K.

Summary
History has proven Warden’s theories to
be correct. The new paradigm for war in
this technology and information-based
age is to directly influence the enemy’s
leadership by affecting his capability to
function as a cohesive system. Blind the
enemy’s leadership by cutting off com-
munications, taint their information or
prevent them from receiving it, disrupt
key production facilities and other na-
tional infrastructure to deflate national
morale, and inflict choke points. By
denying an enemy any one of these
capabilities, an aggressor gains signifi-
cant advantage. If the Y2K issue is not
adequately addressed, we will allow all
these things to happen to our National
Command Authorities. Our enemies,
all of them, will achieve these advan-
tages, simultaneously, without any
effort on their part. Y2K is the Pearl
Harbor of the 21st century just waiting
to happen, but only if we let it. ◆

About the Author
Lt. Col. Scott B.
Dufaud is deputy pro-
gram manager for the
U.S. Air Force Year
2000 Program Manage-
ment Office at the Air
Force Communications

Agency (AFCA), Scott AFB, Ill. Prior to
assuming these duties in November 1996,
he was the chief of the Software Manage-
ment Division at AFCA. Dufaud special-
izes in software management issues, soft-
ware engineering process groups, software
process improvement via the Capability
Maturity Model, technology insertion,
and issues of accelerating organizational
change. He previously served at Headquar-
ters Strategic Air Command and U.S.
Strategic Command, the Air Force Man-
power and Personnel Center, and Head-
quarters Air Force Space Command. He
has a bachelor’s degree in computer science
from Southwest Texas State University and
a master’s degree in systems management
from the University of Southern California.

Voice: 618-256-5697 DSN 576-5697
Fax: 618-256-2874 DSN 576-2874
E-mail: scott.dufaud@scott.af.mil
Internet: http://year2000.af.mil

References
1. Reynolds, Col. Richard T., Heart of the

Storm, Vol. 1, Air University Press, Max-
well Air Force Base, Ala., January 1995,
p. 17.

2. Warden III, John A. and Karl P. Magyar,
“Air Theory for the Twenty-First Cen-
tury,” Challenge and Response, Air Uni-
versity Press, Maxwell Air Force Base,
Ala., August 1994, pp. 322-324.

3. Gabriel, Richard A., “Grenada,” Air
Command and Staff College Seminar and
Correspondence Lesson Book 8, Ver. 10,
Maxwell Air Force Base, Ala., pp. 32-44.

6 CROSSTALK The Journal of Defense Software Engineering August 1998

Success in terms of your year
2000 (Y2K) project means not
failing in your Y2K fixes. This

means they must be done on time—this
deadline will not slip. Timing is every-
thing, and the time for certification is
now.

Why certify? Do you have the time
to work for the percent assurance that
Jeffrey Voas calls a “utopian pipe dream”?
[1] Or would you prefer a confidence
based on sound process? Some will do
neither and fall prey to the “I hope”
syndrome, where no certification is
performed and managers rely on normal
testing to avoid failing. But the Y2K
issue is an addition of a magnitude to
the normal software challenge. Peter de
Jager points out that we as software
managers are late 50 percent of the time
[2]. If your system has interfaces, you
not only have your concerns but also
your suppliers’ and users’ concerns as
well. With all the renovation being
done, each change creates another mag-
nitude of problems that require regres-
sion testing. These factors, along with
the additional Y2K burden, make certi-
fication a must.

The Air Force Certification process is
built on two Air Force-recognized stan-
dards: The Air Force five-phased ap-
proach to the Y2K and the Year 2000
Compliance Checklist. These two form a
solid foundation for certification. The
five-phased approach is further described
in the Air Force Year 2000 Implementa-
tion Plan (formerly known as the Guid-
ance Package) and was adopted not only
by the Air Force but also by the Depart-
ment of Defense (DoD) and other fed-
eral agencies in early 1996. The Compli-
ance Checklist is well known throughout
the DoD and is also being accepted by
other agencies.

On top of this foundation, forming
the structure, is a set of seven basic tenets
that bring a higher level of confidence
to the certification process from the
bottom, where the technical develop-
ment is performed to the top levels of
management:
• Consistency Within the Process.
• Working as a Team.
• Documentation, Documentation,

and Documentation.
• Due Diligence.
• Responsibility and Accountability

Within the Signatures.
• Independent Verification and Valida-

tion (IV&V).
• Using the Right Tools.

The roof is supplied by Air Force
top-level support and management sup-
port. Many times, our management has
stepped in to provide visible encourage-
ment and support. To those in the field,
this support is key to alleviating their
concerns over the great amount of extra
but necessary work this effort creates.
Our corporate approach to Y2K pro-
vides the glue that holds it all together.
We encourage and expect organizations
to go beyond the continuing higher-
level guidance and to make it work at
their locations. Much of the guidance is
in the process of being created, which
demands creativity from our organiza-
tions. The guidance can be tailored, and
suggestions for such are provided within
each step, allowing precious flexibility
for organizations to choose the way to
make certification work for them.

Consistency Within the Process
This tenet starts with the selection of
your certifier. The certifier is the most
important person within the process and
is therefore located at the center of this
activity. The relationship between the
certifier and the other roles within the

certification process is displayed in Fig-
ure 1. Certifiers need to be carefully
selected to be able to fulfill the many
demands placed upon them. The section
“Certifier Qualifications” provides guid-
ance to help select certifiers.

Organizations are also encouraged
to remove all conflicts of interest that
can be realized, e.g., if the individual’s
job responsibility is directly within the
same chain of command as the system.
The systems programmer, system
owner, system tester, and point of con-
tact are all examples of individuals who
have stakes in the system and therefore
represent conflicts of interest.

A standard set of tasks has been
developed for certifiers for each of the
five phases in which they will be in-
volved. This enables the same process to
be followed each time with predictable
results. Standard documentation has
also been identified and issued with
templates or guidance to be used to
simplify the certifier’s job. Often, docu-
ment content varies. By making docu-
ments standard, certifiers can maintain
more control of the outcome when
interacting with the others. Standard
roles and relationships for individuals
involved in the process create an ac-
commodating atmosphere.

Next, a standard, required training
process is used to train the certifiers so
they will be aware of documentation,
tools, and how to implement them
consistently. Finally, if the certifier
meets the requirements and is trained,
the process used to certify systems
should not vary across the Air Force.
Therefore, consistency in the process
means getting the right type of person
as your certifier, providing standard
training to increase the consistency
across all certifiers, and performing
checks to verify the process.

Year 2000 Certification
Air Force Tenets to Success

Thomas V. Ashton
U.S. Air Force Year 2000 Program Management Office

Certification of your systems is key to surviving year 2000 problems but cannot guaran-
tee success. Certification by definition can add additional liability problems that can
plague an organization after the year 2000. The Air Force has created a certification
process with seven tenets that if practiced will help guarantee success in the year 2000.

CROSSTALK The Journal of Defense Software Engineering 7August 1998

Working as a Team
This tenet is based on the five standard roles and relationships
illustrated in Figure 1 and defined below. As specified in the
previous tenet, these important roles place certifiers in the
center, but even though certifiers have undoubtedly the most
important role due to the collection of various experiences
and knowledge they must have, they are only one part of the
whole. They need to build relationships with the other play-
ers to be successful. Following are the titles of the other indi-
viduals as shown in Figure 1 and their relationship with the
certifier.

Year 2000 Program Management Office (Y2KPMO)
The relationship between the Y2KPMO and the certifier is
one of support and reporting within already established major
command (MAJCOM) Y2KPMO guidelines. It is never the
intent to circumvent the established link between the certifier
and the MAJCOM Y2KPMO. The Y2KPMO-certifier rela-
tionship should merely be an enabler toward certification.
Since the Y2KPMO is responsible to assign certification con-
trol numbers (CCN) for systems, certifiers need to understand
the reporting requirements to obtain them. The CCN is the
control that identifies that the standard certification process
has been applied to a system.

The MAJCOM PMO
This is the policy-making part of the organization. This
group will determine the purview of all documentation,
how the systems will be certified, who the certifiers are,
what systems they are responsible for, and the extent of the
Program Management Plan (PMP) for the organization
(one overall broad PMP or several PMPs that represent
separate business segments). The PMP must determine if all
mission-critical and mission-essential systems receive inde-
pendent test-type certification.

The Chain of Command
The certifier may be required to report to two chains of com-
mand. There will be the normal chain that involves the
certifier’s supervisor and the new addition of the systems chain
of command. This relationship needs to be defined early to
determine the needs of each party. Certifiers must feel confi-
dent with this chain of command because there may be times
when they need their command’s immediate attention to ad-
dress a potential Y2K failure or symptom. The chain of com-
mand will need confidence that the certifier will only bring
items tantamount to the success of the system to their atten-
tion. Therefore, this relationship is one of reporting and ac-
tion. Care must be given to avoid unnecessary reporting to the
chain of command, which can bog down the certification
process.

The Programmer or Point of Contact (POC)
The programmer or POC is a generic representation of the
person responsible for system development. In smaller organi-
zations, the certifier may deal directly with the programmer. In
larger organizations, it may be the system manager or POC.
Depending on the software background of the certifier, this
relationship may include formal and informal meetings. If
certifiers have little software background, they may need to
attend early meetings to determine responsibilities and types of
reporting. Some of the other activities within this relationship
are Y2K monitoring, assembling documentation (anticipating
tenets four and five), and creating mutual Certification Track-
ing Document and Certification Level agreements. The more
that is agreed upon in the Certification Tracking Document,
the less that will be in contention later.

People in all roles need to work together as a team. If a
single relationship is out of step, the potential for failure in-
creases exponentially. For example, if certifiers find that actions
taken by the development team are not consistent with the
original plan, they must immediately bring this to the atten-
tion of the chain of command. It takes considerably longer to
apply a fix once a system is in validation and has had a fixed
window fix applied to it when the original strategy was for a
four-digit year data fix. The same situation occurs if the
chain of command does not speedily react. Fixes, if accom-
plished when discovered in the earlier phases, can be more
easily applied.

Documentation, Documentation, and
Documentation
Most of the documentation in question already exists in most
organizations; therefore, providing documentation becomes as
simple as creating the Y2K connections and additions to each
piece. Just as documentation adds consistency to the process,
the lack of documentation can cause disorder and increase the
risk of failure and lead to interfaces that need rework or do not
have anything to do with each other.

Taking the time to establish documentation early in the
process will save time in the long run and reduce errors. Care
must be taken to gather and organize the proper written
communication that will maintain proper tracking through-

Year 2000 Certification: Air Force Tenets to Success

Figure 1. Roles and responsibilities. The certifier is the “center” of
certification activities.

8 CROSSTALK The Journal of Defense Software Engineering August 1998

Policy and Management

out the systems development or renova-
tion. Along with providing a record of
what was done, proper documentation
helps all involved in the project better
understand their roles and their rela-
tionship to others on the team. Main-
taining documentation will not reduce
all errors; however, when there are er-
rors, the documentation will make it
easier to track them down. The section
“A Review of Required Documenta-
tion” lists all the required documenta-
tion and gives example content.

Due Diligence
Due Diligence will probably be the most
important tenet after the dust settles. If
your mission-critical or mission-essential
system should fail due to a Y2K prob-
lem, you may find yourself testifying in
court. Without evidence of due dili-
gence, those involved could be held
liable for the damage created by system
failures—this is the case in the Air
Force because the certifier must sign
documentation to certify the system is
Y2K compliant.

Recent news articles and comments
by Air Force management have increased
concern in this area, most notably
through questions received during Air
Force Certification training. Further, no
one is “bullet proof,” and the facts will
determine how a case will be handled. In
most instances, however, people who
have been adequately trained, act re-
sponsibly, are competent in their job,
put forth their best effort, and identify
shortfalls that are beyond their control
are at little risk. On the other hand,
people who are incompetent, dishonest,
or deceitful are at a higher level of risk.
In the final analysis, there may always be
some level of tension when managers try
to allocate scarce resources and action
officers try to apply these insufficient
resources to complete the required tasks
with due diligence.

We have defined due diligence as the
necessary and earnest effort to accom-
plish a task. What does this mean? The
definition is relative to the task being
performed. Let us take it from the certi-
fiers’ perspective. First, certifiers must
determine how their background fits in
with the developers and the testers with
whom they will be working. Some certi-

fiers may not have the background nec-
essary to understand everything a devel-
oper or a tester does. In this case, we
recommend that during Air Force Certi-
fication training, certifiers accompany
the developers and the testers to their
routine meetings to better understand
these jobs. We also recommend that the
certifier and the developer together com-
plete the Compliance Checklist and
determine the level of compliance the
organization has chosen for certification
of each system.

Additionally, there are seven forms of
documentation required for certifica-
tion: Certification Tracking Document
(CTD), PMP, Contingency Plan,
Memorandum of Agreement/Interface
Control Documents (MOA/ICD), Test
Plan, Configuration Management Plan
(CMP), and Program Implementation
Plan (PIP). Because they are an integral
part of the IV&V portion of the certifi-
cation process, these forms must be
developed for each system, and the certi-
fier needs to not only be aware of them
but also understand how each is set up
and how they are integrated.

The CTD is the most important tool
the certifier has, and if necessary, it is
designed to be his best defense in a
future courtroom. As the title suggests,
the CTD is the official tracker for the
system. When a Y2K problem occurs, if
the CTD is completely filled out, the
document should point to the area
where the problem occurred. The CTD
helps expose areas of risk, uncover areas
left undone, identify potential problems,
and identify what is left to be done.

The concur and nonconcur blocks
are the most important part of the
CTD. Each block allows the certifier to
raise a red flag if things are not proceed-
ing as expected or desired. Additionally,
and often overlooked, the remarks sec-
tion of each block is a large area reserved
for the certifier’s comments about what
is being done. Although there may not
be enough evidence to nonconcur, certi-
fiers have the opportunity to express any
risks that may be evident that could lead
to failure. Therefore, filling out the re-
marks section with pertinent informa-
tion becomes due diligence. It shows
that certifiers are doing their jobs as the
key players in the process. Without this

information, it is suspect whether certifi-
ers were involved in the process.

Some certifiers have allowed others to
fill out the CTD for them, reasoning that
the developer does the work and there-
fore can better answer the questions. This
action or inaction can, in the worst case,
lead to conflicts of interest—instances
where the proper amount of time was
not allotted to complete the document
and other undesirable effects when the
action of documentation gets in the way
of development (from the certifiers’ or
programmers’ perspective).

We included the job of the certifier in
the process precisely to avoid this type of
conflict. The certifier provides an objec-
tive look at the process. Developers and
testers are too close to their work to
effectively perform the certifier responsi-
bilities contained in the CTD. Therefore,
if this job is not done by the certifier—
even though it does not lead to Y2K
failure—it can be evidence that due
diligence was not performed.

Since evidence can be used to defend
oneself in court, it is important that the
certifier maintain a folder for immediate
and future perusal. This folder should
contain copies of all required documen-
tation as described above and any docu-
mentation deemed important to that
system. For example, an IV&V per-
formed by the Y2K PMO, audits by Air
Force or DoD, and action plans to re-
solve deficiencies exposed by audits.

Responsibility and
Accountability Within the
Signatures
I have already discussed the importance
of the CTD and what makes it an
important document. However, all the
information and data is meaningless
unless accompanied by signatures of
people in key roles. These signatures
represent confidence in the work done
and knowledge that everything possible
was done to make the system Y2K
compliant. Therefore, the responsibil-
ity goes back to all who were involved:
• The programmer or POC, lead devel-

oper, and systems manager (or how-
ever they are designated) will sign the
CTD for every developer who
worked on the system. They must
know that their efforts and work were

CROSSTALK The Journal of Defense Software Engineering 9August 1998

Year 2000 Certification: Air Force Tenets to Success

complete and the total combination of effort will be Y2K
compliant. Their signatures indicate that all the technical
functioning and documentation is correct and complete.
They must rely on most of the prior tenets to ensure their
organizations are ready to document compliance.

• Certifiers are our center of activity; our coordinators, our
unbiased view. Their signature attests that all bases were
touched, everything went according to existing plans, and
everyone who had a part played the part. The certifiers’
eyes link all the players in the coordinated pattern repre-
sented by the documentation gathered.

• Users know what the system is supposed to do for them
and the way the information should look. Their responsi-
bility is to withhold their signatures unless their system is
also proven to work to their specifications. This means that
the documentation that is important to them (MOAs/
ICDs) will be taken care of near the beginning to ensure
direct compliance. Users are responsible for part of the
certification work. It is essential that they are involved
throughout the process to make sure things proceed along
as they specified.
Systems accountability is provided by the signatures. If the

system fails, the certifier, developer, and the user will share the
fault and must work the fix together. Accountability works as a
tool to enforce due diligence. The threat of the courtroom
keeps all parties interested in the final outcome and ensures
they do what it takes to get to Y2K compatibility.

Follow-Up Is the Key to IV&V
IV&V is the sixth tenet to certification and has been devel-
oped as a two-stage process. The first stage ensures that all
tools gathered from the Certification training are in place,
the Air Force Y2K Database (or Air Force Automated System
Inventory) is cleaned up, and that further support is provided
to the organization to get the certification process properly
started. Discussions are initiated to develop the Certification
Plan, the formal listing of certifiers and the systems they will
certify, and to employ the proper initial documentation in-
cluding the CTD. In this vein, follow-up provides a secure
foothold that the original training initiated.

The second stage of IV&V is the actual verification and
validation that certification has properly been done. In this
stage, the database is analyzed for correctness, the systems are
analyzed, and certifiers are interviewed to confirm consistent
and standard application of the certification process. The orga-
nization then performs follow-up by taking all the findings
from the second stage IV&V and developing an action plan to
resolve any deficiencies or problems.

Using the Right Tools
Using the Right Tools and using them correctly is led by the
CTD. All the required documentation is in the section “A
Review of Required Documentation.” There is no doubt these
are the right documentation tools. The question is, “Were they
used correctly?” Following are several of the tools and potential
questions that can be asked.

CTD
• Did the certifier fill out all the blocks and initial all the

activities?
• Did the certifier get management involved when the certi-

fier was forced to nonconcur with an action?
• Were all nonconcurs resolved?

The Compliance Checklist
• Was the certifier present when the Compliance Checklist

was completed?
• Did the developer complete the checklist during testing or

after the tests were performed?
• Were there any comments as part of the checklist?

Contingency Plan
• Is a plan in place for all cases in which one is required?
• Are all Y2K considerations covered?
• Are system and operational items covered?

Test Plan
• Does the test plan include adequate Y2K testing?
• Does the regression testing include all the Y2K changes?

Certifier Qualifications
This section describes the characteristics and experience of the
“perfect” certifier. We realize that individuals who fit this de-
scription realistically do not exist or are extremely hard to find.
To find the best certifier for your systems, it is in your best
interest to find a close match to the perfect certifier descrip-
tion. A certifier is designated by the commander and given
proper authority and responsibility to meet the organization’s
and the Air Force’s Y2K objectives. Selection criteria may differ
depending on the functional area, mission requirements, and
other circumstances determined by the commander. This
document is a guideline that may be used by commanders to
select a certifier.

Organizational Knowledge and Experience
• Knowledgeable of all key players, internal organizational,

external functional, and command elements involved with
systems of interest.

• Sufficient knowledge, skill level, and ability in the func-
tional area of interest to allow effective and timely assess-
ments and evaluations.

• Familiar with and displays an understanding of the com-
plexities of the mission environment, systems, and applica-
tions they must certify.

Technical Knowledge and Experience
• Possess the technical and operational expertise to extract

pertinent information during the certification process.
• Possess the ability to conduct a methodical and extensive

lifecycle analysis of data, information, procedures, and
processes related to the functional area assigned.

• To meet the technical criteria, a certifier should have some
background in

• the Capability Maturity Model for Software.

10 CROSSTALK The Journal of Defense Software Engineering August 1998

Policy and Management

• quality assurance or IV&V.
• testing (planning or execution).
• software engineering.

Authority and Commitment
• Must serve in a level or position

commensurate with the responsibil-
ity, possess the necessary authority to
execute required actions, and have
access to relevant databases and cog-
nizant command authorities.

• Primary or “lead” certifiers must have
sufficient time remaining in the
assignment and position to perform
the duties required until 2001 to
ensure continuity.

A Review of Required
Documentation

CTD
The CTD tracks the progress of certifi-
cation for each system and reduces the
risk of Y2K failure. This tracking pro-
vides management with greater assur-
ance of success by the early identification
and resolution of Y2K-related problems.

PMP
The PMP ensures that everyone, includ-
ing people in your chain of command
and any subordinate organizations, un-
derstands their roles and responsibilities
in relation to solving the DoD and Air
Force Y2K problem. The typical PMP
contains
• information on the background of

Y2K at the organization.
• a goal or purpose for the organiza-

tion.
• direction or program strategy.
• objectives and management ap-

proach.
• responsibilities and resources.
• baseline milestones and tasks and

schedule.
• annexes and support documentation.

Contingency Plan
The contingency plan maintains the
continued success of the system by ad-
dressing every known or possible in-
stance of failure and indicating alterna-
tive resolutions. Contingency plans
address all possible known future occur-
rences of mission interruption—whole
or partial. The plan identifies interim

and permanent remedies and associated
implementation timelines. Contingency
plans also inform system users of pos-
sible work-arounds. Air Force Contin-
gency Plans consist of system and of
operational contingency plans. The
System Contingency Plan is developed
by the programming system manager,
and the Operational Contingency Plan
is formulated at the unit level.

Test Plan
The test plan establishes standard and
consistent plans and scenarios for all
Y2K testing for the development team to
follow. Test reports document the results
of the testing. The test plan typically
includes
• scope.
• system and interface identification.
• referenced documents.
• test environment.
• software transition.
• test site.
• test items.
• personnel.
• test levels and classes.
• test conditions.
• test schedules.

CMP
The CMP establishes and maintains
integrity of automated information
systems (AIS) throughout the AIS
lifecycle. The CMP institutes specific
procedures to manage changes to AISs.
The configuration of the AIS is analyzed
at given points in time. Configuration
changes are systematically controlled,
and there is traceability of the configura-
tion at each step.

MOA/ICD
The MOA/ICD provides complete
agreement between all interface users of
a system. Many ways to solve the Y2K
problem have been identified. Some of
these solutions do not work well with
each other. The MOA/ICD forces com-
munication and agreement on the cho-
sen Y2K resolution method. This is
handled during the assessment phase in
the renovation strategy. In addition,
costs for translators, etc., must be ad-
dressed and agreed upon within the
MOA/ICD.

PIP
The PIP documents when, how, and
who will field the Y2K-compliant sys-
tem. A typical PIP contains
• introduction.
• purpose and scope.
• authority references.
• action agencies.
• actions required.
• milestones.
• resourcing.
• command and control.

In addition, appendixes usually cover
• time-phased actions.
• contingency management.
• automated information systems.
• sources of information.
• points of contact.

Conclusion
Certification adds to the confidence of
Y2K compliance by measuring the pro-
cess and adding the assurance of unbi-
ased checking. This assurance is accom-
plished throughout the five-phased
process in a checklist, or ordered, fash-
ion. Organizations must start now be-
fore it is too late. The seven basic tenets
are keys that can make previous guid-
ance more understandable and attainable
and serve as a measuring stick and a
helping hand. Remember, our corporate
approach to Y2K is the glue that keeps
everything together and allows flexibility.
This approach allows organizations to
work where they feel more comfortable.
The Air Force Certification process is
designed to bring management’s expecta-
tions in line with Y2K compatibility
assurance. u

About the Author
Thomas V. Ashton is a
software specialist and
one of the pioneers of
the Air Force Y2K
problem resolution. In
the Program Manage-
ment Office, he leads

the certification effort and was one of the
key developers of the Certification Train-
ing Program, Certification Tracking Docu-
ment, and Independent Verification and
Validation Program. He co-wrote the
“Year 2000 Air Force Challenges” and
presented it at several conferences in 1996

See Y2K on page 29

CROSSTALK The Journal of Defense Software Engineering 11August 1998

Project management metrics
typically are used to measure the
progress of a project and the

quality of its output. They also may be
used to monitor key parameters of the
development process—for example, the
stability of the requirements or the
effectiveness of the technical review
process. The principal benefit of a
metrics program is improved control of
the project; metrics furnish an overview
of progress against plan, provide early
warning of problem situations, and
enable management to take corrective
action.

That control can be significantly
enhanced by taking a more pro-active
approach to the metrics program—an
approach in which the information
obtained while gathering metrics data is
used to improve the processes used by
the project and the effectiveness of the
project team. The metrics team is in a
good position to observe the lower-level
workings of the project, including the
problems and inefficiencies that are
hindering the progress of the developers
and whether they are being addressed
effectively. Information of this kind is
an invaluable source of ideas for process
improvement. It is also a starting point
for building the management-developer
bonds needed for a successful project.

The pro-active approach to metrics
also focuses on communication. The
success of a project depends, to a sig-
nificant degree, on how the participants
feel about the project, each other, and
their management. People need to feel
that they are accomplishing something
of significance, that they can rely on
each other and their management, that
they are kept informed about project
issues, and that their concerns are
heard. Much of this can be accom-
plished by relatively simple communi-

cation mechanisms—particularly if that
communication is backed up by action.

A successful project usually is the
result of marrying technology and psy-
chology. Both are necessary; neither is
sufficient by itself. Technology usually
prevails; we devote enormous energy to
selecting the optimum software tools
and hardware platforms. But we cannot
forget that people want to work in a
positive environment where they can
make a solid contribution, exercise their
creativity, and develop their skills.

During the course of the SIDPERS-
3 project, we gradually evolved a pro-
active approach that involved five spe-
cific actions designed to help create that
type of positive environment on a team
that peaked at 145 people. These ac-
tions were designed to involve the de-
velopers in the metrics process, to en-
sure they were heard with regard to
process improvements, to improve
communication at all levels, and to
strengthen teamwork on the project.

Metrics Criteria
We selected the metrics to be used on
the project and the way in which they
would be used with an eye toward the
climate we were trying to create. We
understood that no one likes to be
measured and that metrics are threaten-
ing enough as it is, so the intent was to
not make it any worse. People who feel
threatened pull into their shells and
become defensive; they tend to tell you
only what you want to hear. We wanted
a climate in which they came out of
their shells and told us everything.

We ensured that the metrics used
also provided information that was
useful to the development teams and
that it was provided in a timely enough
fashion that they could track their own
progress. The metrics process was set up

so that most of the data came from the
developers; this helped ensure that the
biweekly metrics reviews focused on
progress and problems rather than on
disputing the data. And finally, we
made the metrics as nonpunitive as
possible. The management team did
not use them to judge people; metrics
were not used as the basis for blame,
threats, or performance reviews.
Metrics were not used to compare
teams; some of this is inevitable, but
management did not encourage it.

The metrics team (consisting of one
full-time person and two others part
time) served as the proponent for this
approach to metrics. We articulated the
overall intent, convinced management
to adopt it, and successfully argued the
case, for example, with those who ini-
tially saw metrics as a convenient way
to measure people rather than project
accomplishments.

Biweekly Metrics Review
Every two weeks, the senior manage-
ment met with the eight to 10 develop-
ment team leaders and the metrics team
to review the project metrics. Over time,
we moved these meetings away from the
initial inquisition-excuses-blame mode
to a more positive mode in which we
focused largely on removing the impedi-
ments that kept one team or another
from meeting its planned objectives.

We changed the meetings by both
convincing management of the advan-
tages of a solution-based approach and
taking a pro-active approach to identi-
fying and removing impediments to
progress. The problems faced by the
teams were real: hardware that arrived
late, repeated compiler problems,
interteam process problems that neces-
sitated excessive rework, and many
more. Before each meeting, we asked

Pro-Active Metrics
George H. Wedberg

McDonald Bradley, Inc.

Metrics can be used for more than measuring things. They can be viewed as the starting point for process improve-
ment on a project and as a mechanism to improve communication and teamwork. This article summarizes what
was learned in this regard over the course of several years as the metrics program was developed and managed for
the U.S. Army Standard Installation/Division Personnel System – Version 3 (SIDPERS-3) project.

Measures and Metrics

12 CROSSTALK The Journal of Defense Software Engineering August 1998

Measures and Metrics

the team leaders to identify their cur-
rent problems in writing. We addressed
each problem in the meeting, developed
a plan for dealing with it, and followed
up after the meeting to ensure the plans
were being carried out. The senior
managers agreed to help effect timely
resolution of the problems and left
many review meetings with a list of
calls to make.

In time, the development team
leaders realized that putting a problem
on the table would result in help rather
than blame, and this encouraged them
to surface problems rather than hide
them. Giving the project manager in-
formation about real and potential
problems strengthened his control of
the project in at least two ways. First,
he could deal with real problems while
they were still small and relatively easy
to resolve. Second, he could investigate
potential problems and take mitigating
action long before they affected the
project. His control also was strength-
ened because team leaders and senior
management were now working as a
team with a corresponding increase in
mutual trust. That the latter was not
easily quantified made it no less real.

Implicit in this teamwork was the
unspoken understanding that once the
impediments to your progress have
been eliminated, there is no longer any
reason you should not make your dates.

Technical Reviews
Technical reviews in one form or an-
other, e.g., walk-throughs and inspec-
tions, have long been acknowledged as
technically useful. They are used to find
problems early and to help prevent
future problems. Don O’Neill de-
scribed a software inspection program
and its benefits in “Setting Up a Soft-
ware Inspection Program.” [1]

As one response to the number of
software defects showing up in the
metrics, the metrics team encouraged
the development of a formal code in-
spection process by the software devel-
opers. The resulting process used exten-
sive checklists, assigned roles and
responsibilities for the review, and
tracked the numbers and types of de-
fects found.

The code inspections also increased
the sense of teamwork on the project.
Almost any well-run technical review
process accomplishes this for several
specific reasons. First, the process
teaches people how to depend on one
another, which is a key element of
teamwork. They learn that accepting
detailed evaluation of their material by
their peers leads to a better product.
They experience the satisfaction of
being heroes when it counts most—at
product delivery time.

The barrier that has to be overcome
is ego. Few enjoy having their mistakes
and bad assumptions pointed out, par-
ticularly in a group meeting. A good
technical review process minimizes this
problem by decriminalizing errors [2].
Errors are treated as a fact of project
life; everyone makes them, no one is
blamed for them. The idea is to make
them visible, classify them, and learn
from them. In time, people learn to
react to their errors objectively rather
than defensively, and a great battle has
been won. The importance of subjugat-
ing ego cannot be overemphasized. A
1996 article in Fortune magazine de-
scribed a number of world-class
teams—from the U.S. Navy Seals to the
Tokyo String Quartet. A common
theme throughout the article is the lack
of individual egos on these teams; every
member is totally focused on the mis-
sion of the team [3].

The technical review process also
builds teamwork because participants
learn a new and useful process together.
They learn how to evaluate a product
against written requirements rather
than personal preference. Experience
with inadequate and incomplete re-
quirements also leads to enlightenment
about developing good requirements.
Participants learn how to classify errors
according to their source, which is a
basis for preventing future errors. Par-
ticipants also learn how to run a disci-
plined meeting, e.g., the purpose of the
review is to identify errors, not resolve
them; resolution of errors is the privi-
lege and responsibility of the producer
of the material [4]. In time, the partici-
pants learn that they can be more suc-
cessful together than as individuals.

Empty rhetoric about “teamwork” is
widespread in the business community;
technical reviews are one concrete way
to implement the rhetoric.

Communication
The goal of our communication pro-
cesses was to establish as open an envi-
ronment as possible—one in which
people were comfortable surfacing
problems and telling us what they
needed to be more effective. We used
several mechanisms in addition to a lot
of one-on-one discussion:
• We conducted an informal written

survey of all members of the project
that asked them what they thought
was going well and not so well, what
problems they were having, what
they would like to see changed, and
the like. The objective was not mea-
surement but rather to see what they
had to say. Although the survey was
anonymous, we invited those who
were concerned about having their
E-mail traced back to them to re-
spond any way they chose, includ-
ing notes under my door at night.
Because a few did the latter indi-
cates the difficulty of establishing
trusting communication.

• We conducted skip-level meetings
in which programmers, testers, etc.,
met in groups of a dozen or so with
the project manager—no other
managers or team leaders were
present. The participants were en-
couraged to bring questions from
their teammates as well. This was an
opportunity to discuss rumors about
high-level topics such as project
direction and funding, to surface
frustrations directly to senior man-
agement, and to understand and
influence the project manager’s
thinking. This direct contact, some-
what unusual on a project of this
size, let the project manager explain
his priorities and reasoning without
the usual middle management filters
and gain a direct understanding of
what was important to the employ-
ees he supervised. Out of these
meetings also came a number of
“social” changes to the project, e.g.,
the occasional holiday party evolved

CROSSTALK The Journal of Defense Software Engineering 13August 1998

into monthly project luncheons,
and casual Friday became casual
summer, then became permanent
casual.

• We conducted lessons-learned exer-
cises after each major increment of
the project. The metrics group col-
lected inputs from all project areas,
organized them by subject area, and
facilitated working meetings to
discuss problems, working relation-
ships, and potential process im-
provements. The documented out-
puts of the meetings were the basis
for process improvement activities.
The communication mechanisms,

in addition to revealing problems, also
raised the level of trust on the project.
As might be expected, the developers
sometimes used their communication
opportunities to challenge manage-
ment, in effect, to improve some aspect
of the project. When management
responded promptly with meaningful
actions, both sides knew that everyone’s
level of commitment had just risen.

Process Improvements
The biweekly metrics reviews, the les-
sons-learned exercises, and the other
communication mechanisms brought
out problems and frustrations of all
kinds—from inadequate technical plan-
ning to lack of vendor support to poor
working relationships between project
teams. All such concerns were analyzed
to determine their underlying causes.
More often than not, the cause was a
poor or nonexistent work process; this
was particularly true of problems in-
volving friction between project teams.

Of course, the configuration man-
agement (CM) team was unhappy that
developers were turning over code to
them before it was properly integrated;
investigation showed there was no well-
defined process for integration and
turn-over. And the coders were annoyed
at having to rewrite modules numerous
times because the database kept chang-
ing; investigation showed there was no
visible plan or schedule for database
changes.

Some of the resulting process im-
provements were accomplished simply,
e.g., a verbal agreement between two
individuals to exchange key informa-
tion at regular intervals. Other im-
provements required analysis, docu-
mentation, and review. The CM
problem noted above led to a diagram
showing the sequence of all steps re-
quired to manage software modules
from the developer’s unit test onward;
this included the definition of each
step, the person responsible for accom-
plishing it, the machine on which it was
to be performed, and so forth. Project-
wide distribution of that diagram sig-
nificantly reduced the friction between
the developers and CM while increas-
ing project productivity. This, like most
process improvements, strengthened the
project manager’s control of the project
by making the software development
process more predictable.

Conclusion
The pro-active approach to project
management metrics—a combination
of measurement, process improvement,
and communication—strengthened the
project manager’s control of the project
in several ways.
• The measurements provided an

objective picture of the project’s
progress, status, problems, successes,
and failures. This factual informa-
tion provided the basis for subse-
quent management and technical
decisions.

• Process improvements made many
aspects of the project more predict-
able. Every process improvement
that standardized a procedure or
eliminated an impediment, for ex-
ample, made it more likely we
would get the desired result in the
expected time frame.

• The open communication environ-
ment meant that we got useful input
from a wide variety of people at all
levels of the project. We also believe,
but cannot prove objectively, that
there were many intangible benefits
from that environment—people
who are both informed and heard,
and thereby involved, have a higher

level of commitment. We saw that
commitment on many occasions.
Each of these practices emphasizes

the role and needs of the project’s indi-
vidual contributors and thereby
strengthens their connection to the
project and its success. It is difficult to
remain disinterested or cynical when the
work is going well and the project is
helping you meet your personal goals. u

About the Author
George H. Wedberg is
a program director
with McDonald Brad-
ley, Inc. He has over 20
years experience with
all aspects of the soft-
ware development

lifecycle, in both the federal and the
commercial sectors. Past accomplish-
ments include development of the first
software engineering program for General
Electric Information Services Company,
development of the metrics and risk
management programs for the SIDPERS-
3 project, and creation of measures of
effectiveness for the Department of
Health and Human Services and for the
U.S. Marine Corps. He holds a doctorate
in physics from Indiana University.

McDonald Bradley, Inc.
Suite 805
8200 Greensboro Drive
McLean, VA 22102
Voice: 703-827-9376
Fax: 703-827-8604
E-mail: wedbergg@erols.com

References
1.O’Neill, Don, “Setting Up a Soft-

ware Inspection Program,”
CROSSTALK, Software Technology
Support Center, Hill Air Force Base,
Utah, February 1997.

2.Rifkin, Stan and Charles Cox,
“Measurement in Practice,”
Carnegie Mellon University Software
Engineering Institute Technical Report
CMU/SEI-91-TR-16, ESD-TR-91-
16, July 1991.

3.Fortune, Feb. 19, 1996, pp. 90-99.
4.Freedman, D.P. and G.M.

Weinberg, Handbook of Walk-
throughs, Inspections, and Technical
Reviews, Dorset House, New York,
1990.

Pro-Active Metrics

14 CROSSTALK The Journal of Defense Software Engineering August 1998

Software product maturity: a measure of the progress
software products are making toward satisfying user re-
quirements [1].

The Air Force Operational Test and Evaluation Center
(AFOTEC) uses a software product maturity evaluation as a
test readiness criterion for a system’s software prior to a system’s
entry into dedicated operational test and evaluation (OT&E).
Our evaluation is a trend analysis of software changes identi-
fied during software development and testing. Based upon this
analysis, AFOTEC provides a recommendation of the
software’s readiness for operational testing. This evaluation
currently does not provide any kind of projection of future
software product maturity but provides an excellent snapshot
of system maturity. (However, AFOTEC has performed some
investigation into methods of maturity projection [2].) The
entire method is documented in [1].

Software Product Maturity Data Requirements
Our experience shows that most developers and procurement
offices already collect the data necessary to perform a software
product maturity evaluation. Data that describes and tracks
documented software changes serves as the key input to the
evaluation. Following are the minimum data required for each
software change to evaluate software product maturity.
• Software change (problem) number.
• Description.
• Computer Software Configuration Item (CSCI) Identifier.
• Severity level.
• Date change opened (or problem found).
• Date change (problem) closed and implemented.

For the change Severity Level definitions, AFOTEC
adapted the “Priority Classifications for Problem Reporting,”
listed in Appendix C of MIL-STD-498. Using these defini-
tions, systems with open Severity Level 1 or 2 software changes
are not recommended for entry into dedicated OT&E. Many
organizations use different severity, criticality, or priority defi-
nitions. Any reasonable ranking system is acceptable as long as
a clear definition of product maturity is included.

Software Changes
By software change, we mean any change that
• Corrects errors (corrective change).

• Enhances system capability (perfective change).
• Makes the software compatible with changes in the com-

puting environment (adaptive change).
In our evaluations, we include software problem reports,

software failure reports, software change requests, trouble re-
ports, and any other data that fits the above definitions. If the
software does not meet user requirements, the documentation
of the unmet need is an input for the software product matu-
rity evaluation.

External Factors
To correctly gauge readiness to deliver, developers must also
evaluate test completeness, test rates, and requirements stabil-
ity. Any of these factors can cause product maturity to look
unrealistically good or bad. Obviously, if only 10 percent of
the planned tests have been completed, it is premature to ship
the product—despite low software change trends. Likewise,
high test rates will likely produce more changes and problems
than lower test rates. Requirements instability is one of the
most common causes of software product immaturity of the
Department of Defense’s long development cycle projects.

Maturity Evaluation and Analysis Tool
AFOTEC developed a Microsoft® Excel for Windows™-
based tool, called Maturity Evaluation and Analysis Tool, to

Are You Ready to Deliver? To Ship? To Test?
Capt. Brian Hermann, U.S. Air Force

Jim Russell, Honeywell, Inc.

How do you know when you are ready to deliver your software product? Do you ship on your contract delivery
date? Are you under pressure to get the product to market and beat the competition? What kind of measures and
metrics do you use to make the decision to deliver? This article introduces the method the Air Force Operational
Test and Evaluation Center uses to determine whether a system’s software is mature enough for the system to enter
dedicated operational test and evaluation and to subsequently be fielded or procured. Though we use this evalu-
ation to determine test readiness and suitability for fielding and procurement, it could easily be applied as an exit
criteria for software development or as a component of the “decision to ship” process.

Figure 1. Accumulated software changes (weighted).

0

1000

2000

3000

4000

5000

6000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Period Number Weekly

C
h

a
n

g
e

 P
o

in
ts

Originated Closed Remaining

CROSSTALK The Journal of Defense Software Engineering 15August 1998

automate the data manipulation, produce trend charts, and
speed analysis and reporting. The tool and user’s manual are
available to U.S. government offices and their contractors at
no cost from HQ AFOTEC’s Software Analysis Division at
DSN 246-5310 or E-mail sas@afotec.af.mil.

Trend Charts and Analysis
Software product maturity evaluation entails a graphical
analysis of change data trends in the context of project sched-
ule and other external factors. The basic product maturity
chart (Figure 1) shows the total changes originated, closed, and
remaining trends. (Note: These charts contain data from
multiple, real systems and are provided as examples only.) To
indicate maturity or progress toward maturity, the total
changes originated trend should begin to level off. This indi-
cates testing is finding problems at a decreasing rate. If prob-
lems are being closed efficiently, the total changes closed
curve should closely follow the total originated trend. Ideally,
all identified changes are closed, and the remaining changes
curve would show no backlog.

Although the remaining changes trend in the basic chart
shows the current software problem or change backlog, Figure
2 presents a more useful view. This stacked bar chart shows the
overall backlog trend as well as each severity level’s contribu-
tion to the total backlog.

Figure 3 shows both remaining changes for each CSCI and
the defect density (the number of remaining changes or prob-
lems divided by thousands of new or modified source lines of
code). In addition to the minimum change data, defect den-
sity analysis requires code size information. Literature suggests
software is not ready for release until the defect density is be-
low 0.5 [3]. Rather than blindly endorse this number, we sug-
gest developers select a threshold of their own. Finding por-
tions of software with the most remaining problems and the
highest defect densities are two additional pieces to the prod-
uct maturity puzzle.

Our product maturity tool produces over a dozen addi-
tional trend charts including average severity, severity level

distribution, average closure time, charts for each severity level,
and charts for each configuration item or subsystem.

Value to Software Developers and Software
Professionals
The AFOTEC approach for evaluating software product matu-
rity is directly transferable to any software development activity
and has much more value to a software developer than to an
operational tester. Table 1 (page 30) shows just a few possible
uses of the software product maturity evaluation.

Conclusion
Some of you may be thinking “so what.” Yes it is true—this
data is usually collected and readily available. Beyond manag-
ing rework, however, few developers take full advantage of this
data housed in their own configuration management systems.
Developers, as owners of the data required to perform a soft-
ware product maturity evaluation, are best able to perform this
evaluation and use the results to improve the quality of their
products. Having metrics to back up your answer to the “are
you ready …” question will help base your decision on quanti-
tative facts vs. reliance on your gut feelings.

As former software maintainers, we wish we had been
able to see the snapshot this maturity evaluation provides.
It has been said that a “picture is worth a thousand words.”
What is the picture of your software product’s maturity
worth to you? u

About the Authors
Capt. Brian Hermann, U.S. Air Force, is an
Air Force Institute of Technology (AFIT) com-
puter science doctoral student at Arizona State
University in Tempe, Ariz. His current area of
study is software engineering. He was previ-
ously assigned to the AFOTEC at Kirtland Air
Force Base, N.M. He has a master’s degree in

software systems management from AFIT and a bachelor’s degree
in electrical engineering (computer concentration) from the Uni-
versity of Notre Dame.

Figure 2. Remaining software problems (unweighted).

Figure 3. Remaining changes and defect density.

See READY TO DELIVER, page 30

Are You Ready to Deliver? To Ship? To Test?

0

100

200

300

400

500

600

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Period Number Weekly

N
u

m
b

e
r

o
f

C
h

a
n

g
e
s

Severity 1 Severity 2 Severity 3 Severity 4 Severity 5

0

50

100

150

200

250

300

CSCI
#14

CSCI
#11

CSCI
#5

CSCI
#7

CSCI
#12

CSCI
#15

CSCI
#6

CSCI
#8

CSCI
#3

CSCI
#13

CSCI
#10

CSCI
#9

CSCI
#2

CSCI
#4

CSCI
#1

Computer Software Configuration Item

R
e
m

a
in

in
g
 C

h
a
n
g
e
s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

O
p
e
n
 C

h
a
n
g
e
s/

K
L

O
C

Remaining Changes Remaining Changes/KLOC

16 CROSSTALK The Journal of Defense Software Engineering August 1998

Figure 1. The desirable relationship is for control
limits to be inside the test limits.

Statistical process control is a
method that allows users to sepa-
rate random variations in their

data from nonrandom variations, then
analyze the nonrandom variations to
improve the quality and reduce the cost
of products. Conservative calculations in
this article suggest that program man-
agers can save millions of dollars over the
life of a weapon system by applying
statistical process control theory to auto-
matic test programs. In this article, I use
historical test data to show how statisti-
cal theory can be used to improve test
programs. It is intended for readers with
some basic knowledge of statistics but
does not get into mathematical deriva-
tions because commercial applications
ranging from spreadsheets to statistical
process control products can perform
the statistical calculations.

In my experience, SPC has been an
overlooked tool in supporting the test
programs associated with Automatic Test
Equipment (ATE). Because of my suc-
cess with SPC techniques in the field of
ATE and circuit cards, these are used in
the examples. However, SPC techniques
can be applied to many other areas in
which the user can break the repeatable
process down so that the statistics can be
applied to well-defined, repeatable, and
measurable steps.

Advantages of Using SPC
Techniques
There are many advantages to using
SPC techniques during the develop-
ment and maintenance of test pro-
grams. SPC techniques identify the true
performance capability of the test pro-
gram in relationship to the circuit card’s

performance and the test station’s abil-
ity to test the circuit card. The use of
SPC techniques will help reduce the
overall lifecycle cost associated with the
test program, including
• Eliminating or reducing the possibil-

ity of performing repair actions on a
good circuit card.

• Reducing the chance of changing
tolerances that would allow a faulty
circuit card to pass.

• Reducing the chance of sending a
faulty circuit card to the supply sys-
tem as a good asset.

• Eliminating or reducing the tweaking
of tolerances and test procedures that
occur over the life of a test program,
usually one at a time. By contrast, all
of the potential problems identified
through these techniques could be
addressed in a single software update.

• Ensuring invaluable information is
available if the tested item ever be-
comes obsolete. If a circuit is rede-
signed, it would be logical to assume
the design engineer would design the
new circuit to perform at the center
of the testing tolerances. There is a
potential that the new circuit will not
function properly in the system if the
older circuit performed closer to the
edge of the tolerance.
The following example shows how

you can estimate your potential savings
by requiring the use of SPC techniques.
Data for your specific project would be
needed to determine your potential
savings.
• Assume, for instance, that on the

average, the use of SPC identifies 10
changes that need to be made on the
test programs (C = 10).

• Assume that you are managing 100
analog test programs (T = 100).

• Assume there is an average $10,000
price per software update (P =
$10,000).
If the problems are identified and

corrected one at a time, your cost is
C*T*P or 10 * 100 * $10,000 =

$10 million
If, by using SPC techniques, all

problems are identified and corrected in
a single update, the cost to the program
manager is T*P = 100 * $10,000 = $1
million. This saves you $9 million in
software updates. These calculations do
not include the potential savings from
reducing the rework costs.

Where to Start
To begin using statistics to control pro-
cesses, you should identify what should
be measured, the sampling method, and
the data that exists. Statistics can be
applied to both the product and the
process. The product data includes con-
formance to specifications, whereas the
process data includes the cost, schedule,
and defect data. To use statistics on the
process, the user must be able to break

Using Statistical Process Control with
Automatic Test Programs

David B. Putman
Technology and Industrial Support Directorate,

Software Engineering Division, Hill Air Force Base

Many program managers are struggling with trying to meet their requirements with a declining
budget. Statistical Process Control (SPC) is a tool that may help program managers get a greater
return on investment. This study used historical test information to determine whether SPC should
be used as a normal part of developing and supporting automatic test programs. The findings
suggest that significant cost savings, with increased quality, can be gained by using SPC techniques.

CROSSTALK The Journal of Defense Software Engineering 17August 1998

Figure 2. An undesirable condition – the lower
control limit is less than the lower test limit.

Figure 3. An undesirable condition – the upper
control limit is greater than the upper test limit.

Figure 4. An undesirable condition – both test
limits are inside the control limits.

the process down so that the statistics
can be applied to well-defined, repeat-
able, and measurable steps.

The Sampling Method
It is often cost prohibitive to perform a
manual measurement on every product
produced. In this case, you need to ad-
dress a method of using sample sets,
such as randomly sampling 10 units
every week. In other cases, automated
systems may give you a 100 percent
sampling capability.

Existing Data
In the case of process data, it is often
difficult to determine exactly what
should be measured, how to measure it,
and how to display the data in a useable
manner. When implementing the SPC
concept, you may immediately develop
new measurement schemes to capture
“useable” data. Then, after taking process
measurements over time, you may find
that the data you are gathering is not
giving you the information you want.
Applying statistical theory to the existing
data will help guide you when making
changes to how the events are measured.

SPC Review
The run chart and histogram are two of
the easiest methods to display historical
data. These two charts provide much
information about each of the tests per-
formed on the circuit card. The histo-
gram in Figure 1 shows the desirable
relationship between the upper and the
lower test limits (UL and LL) in com-
parison to the upper and the lower pro-
cess control limits (UCL and LCL). The
desirable relationship is for the control
limits to be within the limits defined by
the test program.

When the control limits fall outside
of the test limits, as shown in Figures 2
through 4, many items will be reworked,
thrown away, or salvaged for parts, re-
sulting in higher production costs. The
process may also incur additional intan-
gible costs. An example of an intangible
cost is customer dissatisfaction, which
may result from paying excessive costs,
lengthy delays, poor quality, or receiving
faulty products. When the control limits

fall outside of the test tolerances, as
shown in Figures 2 through 4, the fol-
lowing questions should be asked.
• Can the manufacturing process or (in

the case of ATE) the repair process be
changed to reduce the rework costs
and improve the quality?

• Are the specification limits correct?

Applying SPC Concepts to Our
ATE Test Programs

ATE Test Tolerances
The derivation of the ATE test toler-
ances for electronic circuits can typically
be traced to one of the following three
methods.
• The parameter was specified in the

original design requirement.
• A calculation was made to determine

the theoretical performance of the

circuit. This could be the result of a
manual calculation or a computer
circuit simulation.

• A measurement was made on a good
circuit card, often called a “golden
board,” and then a +/-n% tolerance
was added to the measurement.
From an SPC viewpoint, none of the

methods discussed above will identify
the capabilities of the circuit and the test
station’s ability to test the circuit. The
verification of the system design is based
upon a First Article Test, which usually
verifies only that the system meets the
design requirements. The number of
inputs and outputs tested at the system
level may be significantly less than the
total number of input and output pins
on all of the circuit cards internal to the
system.

This problem is further complicated
when the government test program is
not hosted on the factory test equip-
ment. The attributes of the ATE may be
different on the depot test station than
they were on the factory test equipment.
The test station’s attributes, such as in-
put impedance, cross talk, and insertion
loss, have a direct impact on the results
of the test. Typically, the ATE attributes
are not considered when the test specifi-
cations are developed for a circuit card.

Data and Assumptions
During this study, I was fortunate to be
able to collect approximately two years
of test results for a particular type of
circuit board. Approximately 195 cir-
cuit cards of the same type were tested
during this time. Surprisingly, our ATE
does not provide us with an easy
means to capture the test results and
store the information into a format
that can be easily used. Commercially
available ATE may provide this capa-
bility, but I am unaware of any ATE
specifically designed for use with a
government weapon system that pro-
vides this capability.

The historical test results did not
include the UUT serial number, which
may have resulted in the same item
appearing more than once. I assumed
that once all of the tests passed, the
station operator would not rerun the test
program on the same UUT. I also lim-

Using Statistical Process Control with Automatic Test Programs

18 CROSSTALK The Journal of Defense Software Engineering August 1998

Figure 5. The run chart can be used over time to show the results of the
measurements and the effects of process changes.

Test 156007/156008

600

650

700

750

11/10/94

11/10/94

12/21/94

1/19/95

1/24/95

1/24/95

1/27/95
3/3/95

12/11/95

1/22/96

2/21/96

2/27/96

2/27/96

2/27/96

2/27/96

2/28/96

2/29/96

2/29/96

2/29/96

3/29/96

4/29/96
5/7/96

5/15/96

6/12/96

6/12/96

6/18/96

6/24/96

6/27/96

Date

K
O

h
m

s

MEASUREMENT UL LL UCL LCL

Figure 6. The run chart can be used to spot anomalies in the test data.

Test 816003

-0.8

-0.8

-0.7

-0.7

-0.6

-0.6

-0.5

-0.5

-0.4

1/19/95

1/19/95

1/22/96

1/24/95

1/27/95

2/21/96

2/27/96

2/27/96

2/27/96

2/28/96

2/28/96

2/29/96

2/29/96

3/3/95

3/20/96

4/29/96

5/7/96

5/22/96

6/12/96

6/17/96

6/24/96

6/24/96

11/10/94

12/11/95

12/21/94

Date

V
D

C

MEASUREMENT UL LL UCL LCL

ited the data to only the test program executions that resulted
in a UUT-passed message. This gave me an indication of the
condition of the UUTs when they were returned to supply as
serviceable. To perform a study of this nature, I recommend
that the following information be collected for each test.
• Date and time.
• UUT part number and serial number.
• Test station serial number (if more than one may be used).
• Test number.

• Measurement and the units (such as ohms and VDC).
• Upper and lower test limits.
• Pass or fail information.

Process Changes
When calculating the upper and the lower control limits, it is
important to take into account process changes. The run chart
in Figure 5 shows that the UL was lowered in early 1995, and
a second software change was made in early 1996. The first
change had no effect on the measurements being taken or on
the process control limits. The second software change had a
significant impact on the measurements, which in turn shifted
the process control limits. The measurements shifted from the
lower end of the test limits toward the upper end of the test
limits.

The first set of process control limits, UCL
1
 and LCL

1
,

were calculated using only the measurements taken before the
process change in 1996. The second set of process control
limits, UCL

2
 and LCL

2
, were calculated using only the mea-

surements taken after the process change in 1996. The process
capability would appear to be much wider, and therefore
worse, if the standard deviation was calculated using all the
measurements in a single calculation.

Displaying the run chart as shown in Figure 5 allows for a
quick visual comparison of the process capabilities in relation

Terminology
Common terms and acronyms used with statistics and ATE.
ATE: Automatic Test Equipment, which is used in this case to test
electronic circuit cards.
UUT: Unit Under Test, e.g., the electronic circuit card being tested.
TPS: Test Program Set, which includes the software necessary to
test the circuit card and the interface device between the circuit
card and the test station.
LL: Lower limit defined in the test program. The LL may also be
called the lower test limit.
UL: Upper limit defined in the test program. The UL may also be
called the upper test limit.
TEST Number: This number, such as Test 791007, refers to the
programmer-defined file statement number in the source code of
the test program.
Mean (m): The average of the samples.
Standard Deviation (s): A way to show how the samples are dis-
tributed in relation to the sample mean. For a normal distribution,
68 percent of the samples are within m +/- 1s, 95 percent of the
samples are within m +/- 2s, and 99.7 percent of all samples are
within m +/- 3s.
LCL: Lower Control Limit, which for this study I set for the pro-
cess at m - 3s.
UCL: Upper Control Limit, which for this study I set for the process
at m + 3s. Statistically, 0.3 percent of the measurements will fall
outside of the range I selected to calculate the LCL and UCL. Mea-
surements outside of the control limits do not necessarily indicate
that there is a problem; further analysis is required to determine
whether there is a problem with the process.
Sample Set: Often, it is economically unfeasible to perform a 100
percent sampling of the products being produced. Statistics allow
the user to perform a random sample, such as randomly testing 10
items at the end of every week. Through the use of statistics, the
user can predict, with a reasonable certainty, the attributes of the
unmeasured items based upon the results of the items that were
measured. The X(bar) and R control charts are commonly used
when the data is gathered in sample sets.
Histogram: The histogram is a way to graph the frequency (how often)
the measurement occurs. The histograms in this article were graphed
so that the LL corresponds to the left side of the histogram and the
UL corresponds to the right side of the histogram.
Run Chart: A simple way to graph each measurement as it is made.
Adding both the control limits and the test limits to the run chart
provides an easy way to compare the information.
R Chart: A graph of the range (difference) between the largest and the
smallest measurement in each sample set taken over time.
X(bar) Chart: A graph of the average of each sample set taken
over time.

Measures and Metrics

CROSSTALK The Journal of Defense Software Engineering 19August 1998

Using Statistical Process Control with Automatic Test Programs

Figure 7. The run chart for test 150107 shows three peaks in the
measurements.

Figure 8. This test measures the 5VDC applied to the circuit card. All of the
measurements for the bar on the left were taken on station No. 5; all
measurements for the bar on the right were taken on station No. 2. In this
case, the minor calibration difference between the two stations does not
negatively impact the test results.

to the test limits. This chart is a good example of how the use
of SPC techniques may have driven a different outcome than
the software changes associated with the two software releases.
In the first software change, the programmer lowered the up-
per test limit. I was unable to locate the documentation associ-
ated with the change, but I assume the change was probably
driven by a UUT that failed in the next higher assembly, yet
passed at the upper margin of the test tolerances.

In a similar manner, I believe that the second change was
made because good assets were falling slightly below the lower
limit. The lower control limit at that time was lower than the
lower test limit. In the second change, the programmer chose
to add a delay to the program and change the scale on the
multimeter. The result of the second change is the sample
mean shifted from the lower edge of the tolerances toward the
upper edge of the tolerances. The range between the upper
control limit and the lower control limit was basically the
same. I suspect that if this run chart had been available when
the first software change was made in 1995, both the upper
and the lower test limits would have been analyzed in more
detail, and a different solution would have been implemented.

The second software change in 1996 would not have been
required.

Test 816003 (Figure 6) matches the desirable relationship
discussed with Figure 1. Statistically, I expected 0.3 percent
of the measurements to fall outside of the control limits. If
the test limits are correct, I can be confident that the six
circuit cards that measured between the upper control limit
and the upper test limit will work properly in the system.
The SPC user will be able to spot potential problems by
watching these anomalies in the data. Problems with substi-
tute parts, drifting calibrations, and aging or degrading com-
ponents can be detected by looking for nonrandom anoma-
lies and trends in the data.

Multiple Peaks in the Data
The use of multiple vendors or multiple measurement de-
vices may cause peaks and valleys in the histogram, as shown
in Figures 7 and 8. These peaks are another indicator that
there may be a problem with the process. Identifying the
causes of the peaks can be used to improve the procedures to
procure parts, improve the procedures to calibrate the test
equipment, etc.

Process Capability
The run chart and histogram can also show a cause for con-
cern when the process capability is too good to be true, as is
the case with Figure 9 for Test 791007. The tolerances for
this test may be too wide; the program allows for a 10.000
VDC range between the lower and the upper test limit (-5.0
VDC to + 5.0 VDC). The data revealed that the range for
the 139 circuit cards tested was only 0.0008 VDC between
the lowest reading for the bar on the left (89 samples) and
the highest reading for the bar on the right (50 samples).
Knowing this information, I would suspect that I had a bad
circuit card if it measured 4.50 VDC.

Figure 9. Is this too good to be true? The process capability ratio (UL - LL) /
(UCL - LCL) = 1250. Note: This equation is slightly different from the
more familiar C

PK
 equation.

Test 791007

0

10

20

30

40

50

60

70

80

90

100

-5
.0

0
-4

.5
0

-4
.0

0
-3

.5
0

-3
.0

0
-2

.5
0

-2
.0

0
-1

.5
0

-1
.0

0
-0

.5
0

0.
00

0.
50

1.
00

1.
50

2.
00

2.
50

3.
00

3.
50

4.
00

4.
50

Measurement � VDC

Q
u

a
n

ti
ty

Test 150107

0

5

10

15

20

25

30

35

87
9.

00

87
9.

80

88
0.

60

88
1.

40

88
2.

20

88
3.

00

88
3.

80

88
4.

60

88
5.

40

88
6.

20

88
7.

00

88
7.

80

88
8.

60

88
9.

40

89
0.

20

89
1.

00

89
1.

80

89
2.

60

89
3.

40

89
4.

20

Measurement � Ohms

Q
u

a
n

ti
ty

Test 163807

0

20

40

60

80

100

120

4.80 4.82 4.84 4.86 4.88 4.90 4.92 4.94 4.96 4.98 5.00 5.02 5.04 5.06 5.08 5.10 5.12 5.14 5.16 5.18

Measurement � VDC

Q
u

a
n

ti
ty

20 CROSSTALK The Journal of Defense Software Engineering August 1998

Need to Take Your
Project’s Temperature?

Good software development requires good
data on project status—without it, your
project could be suffering any number of
diseases and you wouldn’t know until too
late.

The Software Technology Support Center’s (STSC)
Measurement Team can help you set up a measure-
ment program or improve an existing one to ensure
you always know your project’s health. Technologies
such as measurement system infrastructure, Practical
Software Measurement, and measurement capability
evaluations are only a few of the methods available
to assist your measurement efforts.

We can

• help you identify organizational goals.
• help you develop measurements that will track

progress toward goals.
• provide measurement workshops.
• provide hands-on coaching to implement a

complete measurement infrastructure.

All services will be tailored to the unique needs of
your organization. You can get as much or as little
support as you need.

Contact the STSC for more information on our cus-
tomized, fee-for-service consultation.

Elizabeth C. L. Starrett, Measurement Team Lead
Voice: 801-775-5555 ext. 3059 DSN 775-5555 ext. 3059
Fax: 801-777-8069 DSN 777-8069
E-mail: measure@software.hill.af.mil
Internet: http://www.stsc.hill.af.mil

Results of the Study
Sixty-five tests for one UUT test program were analyzed in this
study. The first three findings discussed below relate to Figures
2 through 4. Both the repair process and the testing tolerances
should be reviewed for Findings 1 through 3 to determine
whether the excessive rework could be reduced or eliminated.
Reducing the rework effort results in lower costs to the cus-
tomer. The findings included:
• In nine of the 65 tests, the LCL was less than the LL.
• In seven of the 65 tests, the UCL was greater than the UL.
• In three of the 65 tests, both the upper and the lower con-

trol limits were outside of the testing limits.
• Thirty-four of the 65 tests resulted in ratios of the test

limits to the control limits (UL-LL) / (UCL-LCL) greater
than five. This suggests that further analysis should be

performed to determine if the tolerances are too wide and
allowing faulty circuits to pass.

• Using the equation (Sample Mean – Center of test limits) /
(3 standard deviations) revealed that for 13 of the 65 tests,
the sample mean was shifted from the center of the toler-
ances by more than three standard deviations. This also
suggests that further analysis should be performed to deter-
mine if the tolerances are correct. Genichi Taguchi and
many other quality experts stress that the cost of quality
rises if the process is not centered within the tolerances.

Conclusions
SPC techniques should be used as a tool to support test pro-
grams on automatic test equipment and similarly structured
work, because conservative calculations suggest that millions of
dollars could be saved by applying these techniques. Resistance
to change or a reluctance to admit that the previous process
was not perfect may hinder efforts of this nature. Program
managers, shop operators, and engineering staff need to
work together to assure that data is collected and used in an
optimum manner. They also need to assure that future ATE
procurement activities guarantee that the test results can be
easily captured, manipulated, and displayed as shown in
this article. u

About the Author
David B. Putman is lead of the Software Engi-
neering Process Group in the Software Engi-
neering Division at Hill Air Force Base, Utah.
He has over 17 years experience in ATE, two
years with Hughes Aircraft and over 15 years
with the Air Force. He was the senior engineer
within the Avionics Software Support Branch

for nine years, and he supervised ATE engineering teams for two
years. He also supervised the F-16 Operational Flight Program
System Design and Integration Test teams for one year. He has a
bachelor’s degree in electrical engineering from the University of
Utah and a master’s degree in business administration from Utah
State University.

OO-ALC/TIS-3
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: 801-777-4726
Fax: 801-775-3023
E-mail: putmand@software.hill.af.mil

References
1. Crow, Edwin L. et al., Statistics Manual, Dover Publications, Inc.,

New York, 1997.
2. Gujarati, Damodar, Essential of Econometrics, McGraw-Hill, Inc.,

1992.
3. Chase, Richard and Nicholas Aquilano, Production & Operations

Management, IRWIN, 1992.
4. Schmenner, Roger W., Production/Operations Management,

Macmillian Publishing Company, 1990.

Measures and Metrics

CROSSTALK The Journal of Defense Software Engineering 21August 1998

The distribution of faults
within any particular software
product is not uniform. For

example, 47 percent of the faults found
by users of OS/370 were associated
with only 4 percent of the modules [1].
Therefore, what is needed are metrics
that can be applied to detailed designs
to predict which modules will be fault-
prone. Then, instead of wasting money
detecting and correcting faults during
implementation and integration, those
modules can be redesigned before cod-
ing commences.

Metrics of this kind can also be
applied to existing software, to predict
which modules are likely to contain
residual faults when the software is
installed. Residual faults can have two
major adverse consequences: run-time
failures, which prevent users from mak-
ing optimal use of the software; and
time that has to be spent on corrective
maintenance. If a fault is detected in an
existing module that has been flagged as
fault-prone, it may turn out cheaper to
discard, redesign, and recode the mod-
ule than to attempt to fix one fault in a
module that probably contains many
other faults.

The CDM is a metric that accom-
plishes this objective. It has outper-
formed a wide variety of other metrics,
both classical and object-oriented, in
predicting run-time failures and re-
sidual faults [2]. In this article, we com-
pare the performance of CDM with
other metrics on four real-world case
studies: run-time failure data for a CO-

each module. We then chose an objec-
tive measure of software quality, for
example, the number of faults detected
in a module after installation. Next, we
computed the Spearman rank correla-
tion [2] between the LOC in each mod-
ule and the number of faults in each
module. A high correlation would indi-
cate that modules with many LOC also
have many faults, i.e., a high correlation
would mean that lines of code is a good
predictor of faults.

The Metrics in Our Case
Studies
We compared a number of different
metrics in each case study, including

Metrics for Predicting Run-Time Failures and
Maintenance Effort: Four Case Studies

Aaron B. Binkley and Stephen R. Schach
Vanderbilt University

It is important to have the ability to predict which modules in a software product are likely
to be fault-prone so that corrective action can be taken. A number of metrics have been put
forward to predict faults and failures, including the coupling dependency metric (CDM). In
the four case studies presented here, CDM outperformed a wide variety of competing metrics.
The case studies were implemented in COBOL, C, C++, and Java and used both classical
and object-oriented methods. This article is a summary of research conclusions that can be
examined in more detail by consulting the references at the end of this article.

This is a brief description of the metrics mentioned in this article. For detailed information on all the
metrics in our four case studies, consult the Internet address listed in [3].

Lines of Code. We computed lines of code as the number of noncomment source statements.
Cyclomatic Complexity. The cyclomatic complexity metric measures the number of branches in a
module.
Fan-in/fan-out. For any module M, the fan-in of M is the count of the modules that call M plus the
number of global data elements. The fan-out of M is the count of modules called by M plus the number
of global data elements altered by M.
Ordinal Scale Coupling. Level numbers are assigned to classical coupling categories. Specifically,
level numbers 1 through 5 are assigned to data coupling, stamp coupling, control coupling, common
coupling, and content coupling, respectively. The level numbers corresponding to each instance of
coupling in a given module are then summed.
Response for a Class. The response set of a class is the set of methods that can potentially be
executed in response to a message received by an object of that class. The response for a class (RFC) is
then the number of methods in its response set.
Coupling Dependency Metric. The coupling dependency metric (CDM) is the sum of three
components: a measure of the extent to which a program relies on its declarations remaining
unchanged (referential dependency); a measure of the extent to which a program relies on its internal
organization remaining unchanged (structural dependency); and a measure of the vulnerability of data
elements in one module to change by other modules (data integrity dependency).

BOL registration system, maintenance
data for a C text-processing utility,
maintenance data for a C++ patient
collaborative care system, and mainte-
nance data for a Java electronic file
transfer facility.

Description of Method
We followed the same procedure in each
of the four case studies. We chose a set of
metrics that would presumably be good
predictors of run-time failures or correc-
tive maintenance for that case study. We
then applied each metric in the set to
each module in the case study. For ex-
ample, one of the metrics was lines of
code (LOC), so we counted the LOC in

22 CROSSTALK The Journal of Defense Software Engineering August 1998

Measures and Metrics

widely used quality metrics like
cyclomatic complexity, object-oriented
metrics like the depth of the inheritance
tree (for the two object-oriented case
studies), and CDM. The metrics com-
pared in the four case studies are de-
scribed in detail in [3]. The sidebar on
page 21 provides a brief overview of the
metrics mentioned in this article.

The OASIS Course Registration
System
OASIS [3] is a university course registra-
tion system developed by Vanderbilt
Administrative Systems. It comprises
290 COBOL modules that total ap-
proximately 80,000 lines of code. Run-
ning on a VAX series computer, the
software allows multiple interactive
student registration sessions to execute
concurrently. Communication between
the sessions is accomplished through 18
shared resources; namely, disk files and
shared memory segments.

During registration periods, a run-
time log is kept that records all OASIS
events, including registration transac-
tions and system-trapped failures. The
data available for this case study con-
sisted of the source code for OASIS and
the run-time log for the software prod-
uct, as recorded during a single registra-
tion period. For each failure, we noted
which of the 18 shared resources was
involved. We then attributed the failure
to any module with access to that re-
source. Then, as previously explained,
for each metric we computed the
Spearman rank correlation between the
value of that metric applied to each
module and the number of failures
attributed to that module. The results
are shown in Table 1.

The three metrics most highly corre-
lated with the number of run-time fail-
ures (the three best predictors of run-
time failures) were CDM, ordinal scale
coupling, and fan-in times fan-out.
These are all coupling-based metrics;
intramodule metrics like lines of code
and cyclomatic complexity fared poorly
as predictors of run-time failures.

The ffortid Text Formatting Utility
Our second case study is ffortid [3], a
text formatting utility for UNIX used to

Medical Center [3]. Designed using
object-oriented methods, it is imple-
mented in C++. The product defines
113 distinct classes and consists of 312
modules that total approximately
82,000 lines of code.

Our study examined data from a
maintenance period beginning with the
original installation of the product and
ending with the product’s second re-
lease. During this period, little or no
enhancement was made to the product.
Instead, maintenance consisted mostly
of modifications made to correct re-
sidual faults. The configuration control
tool used in the development and
maintenance of the product provides
accurate statistics regarding the modifi-
cations made to the source files over
time. For our study, we were therefore
able to compute the total number of
changes (additions, deletions, or modi-
fications of lines of code) made to each
class as well as the total number of
times a class was revised.

The results appear in Table 1.
Again, CDM outperformed the other
predictors of software quality, followed
by number of clients and fan-in. In this
case study, coupling-based metrics out-
performed both intramodule metrics
and inheritance-based (object-oriented)
metrics.

The Electronic File Transfer
Facility
Our fourth case study was with a pro-
gram called submit, an electronic file
transfer facility used in Vanderbilt Uni-
versity engineering courses to allow
students to submit class assignments

Table 1. Results of the case studies showing which metrics were the best predictors of run-time failures
and corrective maintenance.

tcudorPerawtfoS noitatnemelpmI
egaugnaL

etamixorppA
eziS

ataD
dezylanA

scirteM
derapmoC

srotciderPeerhTtseB

metsysnoitartsigeR LOBOC COL000,08 emit-nuR
seruliaf

9 MDC.1
gnilpuocelacslanidrO.2

tuo-nafsemitni-naF.3

ytilitugnissecorp-txeT C COL000,3 evitcerroC
ecnanetniam

71 ycnednepedlaitnerefeR.1
MDC.2

tuo-naF.3

evitaroballoctneitaP
metsyserac

++C COL000,28 evitcerroC
ecnanetniam

11 MDC.1
stneilcforebmuN.2

ni-naF.3

elifcinortcelE
ytilicafrefsnart

avaJ COL000,6 evitcerroC
ecnanetniam

41 MDC.1
ni-naF.2

CFR.3

format Arabic, Hebrew, and Persian text.
It converts ditroff output so that desig-
nated right-to-left fonts are properly
reversed, letters are properly stretched,
and slantable fonts are printed on a
slanted base line. The ffortid utility is
written in C. It is composed of nine
modules that consist of 34 functions that
total approximately 3,000 lines of code.

Our study examined data from a
maintenance period in which eight
distinct enhancements were made to
ffortid. The required changes varied in
magnitude from a simple command
line option change to a more complex
extension that would allow slanted
fonts. During the maintenance period,
the developer recorded daily effort
statistics including time spent working
on the maintenance project, descrip-
tions of the faults encountered as a
consequence of enhancement activities,
time spent correcting these faults, and
the functions to which the time and
faults should be attributed. From this
information we were able to compute
six corrective maintenance measures.
The results were similar for all six mea-
sures; for brevity, we report on just one
here; namely, the time spent perform-
ing corrective maintenance.

Table 1 shows that the best three
predictors were referential dependency (a
component of CDM), CDM, and fan-
out. Again, coupling-based metrics out-
performed intramodule metrics.

The Collaborative Care System
Our third case study is a comprehensive
patient care management system devel-
oped by the Vanderbilt University

CROSSTALK The Journal of Defense Software Engineering 23August 1998

Metrics for Predicting Run-Time Failures and Maintenance Effort: Four Case Studies

directly to their instructors for evalua-
tion [3]. Because the hardware plat-
forms used by students vary, Java was
chosen as the implementation language
for the product. Implemented in a
client-server architecture with clients
for both UNIX and Windows NT
environments, the product defines 29
distinct classes and consists of six pack-
ages that total approximately 6,000
lines of code.

In this study, we examined data
from a maintenance period beginning
with the original installation of the
product and ending with the installa-
tion of the product’s second version.
During this period, no enhancements
were made to the product. Instead,
maintenance consisted mostly of modi-
fications to correct residual faults as
well as design flaws with regard to the
client-server architecture. The source
code was meticulously annotated dur-
ing maintenance to provide accurate
statistics regarding the modifications
made to the source files.

The results of computing the
Spearman rank correlation between the
maintenance data and associated metric
values are shown in Table 1. CDM again
outperformed the other metrics, fol-
lowed by fan-in and response for a class.
Again, the coupling-based metrics were
better predictors of maintenance mea-
sures than intramodule metrics (like
lines of code or cyclomatic complexity)
or inheritance-based metrics (like the
depth of the inheritance tree).

Coupling, Faults, Failures, and
Maintenance
The obvious question is, why are cou-
pling-based metrics in general (and
CDM in particular) such excellent
predictors of run-time faults and cor-
rective maintenance? We believe that in
most software products, a significant
impediment to maintenance is the level
of interconnection between modules;
that is, the coupling between modules.

Consider an arbitrary module M.
Let V denote the value of a coupling-
based metric applied to M. Assume that
this coupling-based metric incorporates
all possible types of coupling between

M and the rest of the product. Then, if
a change is made outside M, V is a
measure of the probability that the
change outside M will require a corre-
sponding change within M. In some
cases, the need for this change within
M will be revealed by the compiler or
linker. However, other types of changes
may be overlooked, especially when a
medium- or large-scale product is de-
veloped by a team. Unless the required
change is made, a run-time failure may
eventually result. This is why coupling-
based metrics in general are good pre-
dictors of run-time failures.

Turning now to maintenance: to fix
a run-time failure requires corrective
maintenance. Thus, a metric that can
predict where a run-time failure is likely
to occur will also be a good predictor of
module-level corrective maintenance
measures like the number of faults or
time to repair faults.

On average, corrective maintenance
occupies less than 20 percent of the
total maintenance effort [1]. However,
coupling also is a good predictor of all
other forms of maintenance, including
perfective and adaptive maintenance.
The reason is that during maintenance
the code is changed, and coupling is a
measure of the likelihood that a change
outside M will necessitate a change
within M, irrespective of the reason for
that change. That is, the value of a
coupling-based metric is a measure of
the probability that M must be changed
as a consequence of any change to the
rest of the product.

Conclusion
We have shown in a set of four case
studies that coupling-based metrics like
the coupling dependency metric
(CDM) are powerful tools for measur-
ing the impact of change. That is, cou-
pling-based metrics are a good way to
predict run-time failures and mainte-
nance measures. u

About the Authors
Aaron B. Binkley is a senior software
developer at Volpe, Brown, Whelan &
Co., a San Francisco-based investment
banking firm that serves companies in the

areas of health care and technology. The
research described in this article was
performed while he was a graduate stu-
dent at Vanderbilt University, where he
obtained a master’s degree in computer
science. His primary research interests
include software quality metrics and
database performance tuning.

Volpe, Brown, Whelan & Co.
One Maritime Plaza
San Francisco, CA 94111
Voice: 415-274-7980
Fax: 415-434-4632
E-mail: aaron_binkley@vbwco.com

Stephen R. Schach is an associate profes-
sor of computer science at Vanderbilt
University. He also is a software engineer-
ing consultant with over 25 years of
computer experience, working with in-
dustry and giving seminars worldwide on
the object-oriented paradigm and soft-
ware metrics. He has published over 90
refereed technical papers. The fourth
edition of his book, Classical and Object-
Oriented Software Engineering, was pub-
lished by McGraw-Hill in August 1998.

Vanderbilt University
Computer Science Department
Box 1679, Station B
Nashville, TN 37235
Voice: 615-322-2924
Fax: 615-343-5459
E-mail: srs@vuse.vanderbilt.edu
Internet: http://www.vuse.vanderbilt.edu/
~srs/

References
1. Schach, Stephen R., Classical and Ob-

ject-Oriented Software Engineering, 4th
ed., McGraw-Hill, New York, 1999
(published August 1998 with a 1999
copyright).

2. Binkley, Aaron B. and Stephen R.
Schach, “Validation of the Coupling
Dependency Metric as a Predictor of
Run-Time Failures and Maintenance
Measures,” Proceedings of the 22nd
International Conference on Software
Engineering, Kyoto, Japan, April 1998,
pp. 452-455.

3. Details of all four case studies can be
found in Technical Reports 97–03
through 97–06, Computer Science
Department, Vanderbilt University,
Nashville, Tenn., 1997 (see http://
www.vuse.vanderbilt.edu/~srs/cdm).

24 CROSSTALK The Journal of Defense Software Engineering August 1998

This article is not for experts
in measurement. It is simply a
list of definitions, examples,

and ideas that may be useful to the
nonexpert. I will not dwell on how to
set up a measurement program or sug-
gest a measurement process because
previous CROSSTALK articles have done
well enough (some of them are listed at
the end of this article).

Definitions
When I first became involved with soft-
ware measurement issues, I thought
“metrics” and “measures” were synony-
mous, but because organizations and
individuals define these terms different
ways, they may or may not be synony-
mous. The following definitions used by
the STSC are commonly used.

Measure: A standard or unit of mea-
surement—the extent dimensions, ca-
pacity, etc.—of any thing, especially as
determined by a standard; an act or
process of measuring; a result of mea-
surement [1]. Examples of measures
include number of defects and source
lines of code (SLOC).

Metric: A calculated or composite
indicator based on two or more mea-
sures; a quantified measure of the degree
to which a system, component, or pro-
cess possesses a given attribute [1]. An
example of a metric is defects per thou-
sand SLOC (KSLOC).

Note that two or more measures
make up a metric. Realize also that com-
bining two or more metrics gives the
information meaning. For example,
while measuring 10 defects per KSLOC
for a current project, how does one
know if this is good, bad, or average?
Comparing this metric with a previous
project provides a baseline for the data
and gives meaning to the metric.

Cost/Schedule Control Systems
Criteria (C/SCSC): A Department of
Defense (DoD) method established in
1967 to standardize contractor require-
ments for reporting costs and schedule
performance on major contracts and to
provide visibility of accomplishments on
each contract. Other U.S. agencies have
also adopted similar criteria [2]. Many
DoD organizations refer to this method
simply as “earned value.” Establishing a
C/SCSC program tends to be complex
and expensive, so it is important to
know that earned value and C/SCSC do
not have to be synonymous—an earned-
value process can be implemented in an
organization without implementing a
formal C/SCSC-compliant function.

Earned Value: A measure of the value
of work performed. Earned value uses
original estimates and progress to date to
show whether the actual costs incurred
are within budget [3].

Indicator: A measure or combination
of measures that provides insight into a
software issue or concept [4]. For ex-
ample, if an organization considers cus-
tomer satisfaction to be an issue, defects
per KSLOC found by the customer
might be a good indicator of customer
satisfaction.

Normalize: To cause to conform to a
standard. Normalizing data is a process
of dividing the numbers back into them-
selves to leave a percentage instead of
actual numbers. For example, an organi-
zation that begins tracking its defects per
KSLOC comes up with six defects per
KSLOC. Every time the organization
counts its defects per KSLOC in the
future, that number is divided by 6.
This gives a relative number that the
organization can use to track whether it
is improving. It also gives the organiza-

tion a number that releases minimal
sensitive information if an outside orga-
nization sees it.

Standard: An accepted measure of
comparison for quantitative or qualita-
tive value. To continue the previous
example, the standard number of defects
per KSLOC delivered to the customer
might be set at four defects per KSLOC.
Future releases are compared to the
standard of four, which provides a rela-
tive perspective to the developer and the
customer. The use of an industry stan-
dard helps the organization understand
how it fares in the marketplace. It is
important to know that although for-
mally designated standards are not avail-
able, informal industry standards have
been established over the past several
years based on the experience of recog-
nized experts [5].

Threshold: A preset limit at which
point action should be taken as a result
of the data. Thresholds are established
above or below the standard or both.
They are often referred to as upper and
lower thresholds. For example, the upper
threshold of defects delivered to the
customer may be six defects per
KSLOC. If the contracting organization
receives problem reports from the cus-
tomer that show the defects in the deliv-
ered software are more than six per
KSLOC, an investigation will begin to
determine why there are so many errors,
and the cause will be corrected.

The definition you choose for any of
these terms is not as important as agree-
ing on common definitions for the en-
tire organization. Ensure that everyone
understands and uses those definitions
consistently.

Measurement 101
Elizabeth C. L. Starrett

Software Technology Support Center (STSC)

All too often, I read an article that uses terms or concepts I do not understand. The author, usually an expert on
the subject, probably assumes the meaning of these terms is obvious and therefore does not explain them. If the
terms and ideas appear frequently, I do not understand the article. In this article, I explain some common
measurement information to clarify terms used in the measurement articles in this issue of CROSSTALK.

CROSSTALK The Journal of Defense Software Engineering 25August 1998

Typical Measures
When starting a measurement program,
the best approach is to reference the
organization’s strategic plan and use
measurements that will indicate if the
organization’s goals are being achieved.
Unfortunately, many organizations do
not have a strategic plan. In this case, the
first measurements should address the
issues important to project managers and
customers (most people involved have
issues). The following five measures will
often be part of the resulting measure-
ment project.

Size
The amount of software a project devel-
ops. The two most common ways to
measure the size of software are SLOC
and function points. One frequently
asked question is, “How do I define
SLOC?” There is no single answer for
this; the most important thing is to
clearly and consistently define it for the
group being measured. Three common
SLOC example definitions are
• The count the compiler gives when it

compiles a program.
• Noncommented lines of code.
• “Any code that requires design, code,

documentation, and test. This does
not count debugging code that will
not be delivered to the customer in
the final product.” [6]
Function points are sometimes used

instead of SLOC and sometimes used in
addition to SLOC. Function points
measure software size by quantifying its
functionality [7].

SLOC are preferred by many organi-
zations because they can be easily
counted, and everyone can understand a
line of code. Function points are pre-
ferred by other organizations because the
number will remain consistent across
languages and platforms and because an
accurate count can be determined at the
requirements phase.

Effort
Effort is the amount of work required
to perform a task. Some example
metrics for effort include
• Man-hours per phase of software

development (requirements defini-

tion, design, code, and test are com-
mon lifecycle phases).

• Man-hours per defined set of re-
quirements.

• Man-hours per project.

Schedule
Schedule is the timing and sequence of
tasks within a project [3]. The schedule
may include tasks, milestones, activi-
ties, and phases required for the project.

It is important to note that the dura-
tion of a task is not necessarily the same
as the effort involved. Two different
projects may take the same amount of
calendar days to complete but have
differing amounts of effort. A project
that takes one person working part time
five days to complete has an effort of 20
man-hours, whereas another five-day
project that employs two people full
time will show 80 man-hours of effort.

Cost
Some people consider cost as a combi-
nation of the effort and schedule, e.g.,
20 man-hours per week for three weeks
equals 60 man-hours. This method of
calculation is flawed because it does not
take into account the differing costs
each organization has. A software cus-
tomer may have two contractors with
similar project requirements. The effort
and schedule for the two contractors
may be the same, but the cost will be
different.

Quality
People differ on what defines a quality
product. Some may be happy with the
quality if there are few defects. Others
may care more about how user-friendly
the software is; still others will be con-
cerned about how easy the software is to
maintain. Following are some examples
of quality metrics.
• Defects: Defects per KSLOC, num-

ber of defects found per lifecycle
phase, number of defects inserted per
phase, cost to fix defects, impact of
defects on delivered system, cause of
defect insertion.

• User friendliness: Response time of
system, capability of a system to
recover from user errors.

• Maintainability: The ease or diffi-
culty of keeping a system up to date
and running. Different organizations
have developed processes for scoring
the maintainability of software prod-
ucts. The process developed by the
Air Force Operational Test and
Evaluation Center (AFOTEC) serves
as one good example. This process
includes a list of questions related to
the software. A board is established
that reviews the software and decides
how well it meets the criteria of the
questions. The board then scores the
software on a scale of 1 to 6: “1”
means that the software is nearly
impossible to maintain and “6” that
it is easy to maintain.

• Rework: Any effort in reaccomplish-
ing work already deemed complete.
Rework effort begins once a defect is
found and continues until all the
work required to obtain acceptance
of the rework is complete [4]. “Al-
ready deemed complete” is the area
of difference among organizations.
Some consider this to be work
deemed complete by the program-
mer, so any code change would be
considered rework. Another organi-
zation does not consider changes to
be rework unless they are changes
made after software is released to the
customer. The definitions follow the
entire range within this time frame.

Crime and Punishment
By law you must collect and act on mea-
surements if you are a government orga-
nization. Rather than list every law here,
following this article is a copy of Appen-
dix A from the Air Force Information
Technology Investment Performance Mea-
surement Guide. The appendix is a list of
the current laws that require measure-
ments.

Methods
There are numerous effective methods to
implement a measurement program, but
to list them all is beyond the scope of
this article. However, I will mention the
Practical Software Measurement (PSM)
method. PSM is important because it is
sponsored by the Joint Logistics Com-
manders (JLC) Joint Group on System

Measurement 101

26 CROSSTALK The Journal of Defense Software Engineering August 1998

Engineering and is gaining acceptance
among government organizations. (The
JLC comprises members from each of
the services who work on issues appli-
cable to all parts of the DoD). PSM was
developed as an aid to establish a mea-
surement program. It currently includes
a guidebook, training, and a software
tool that implements the PSM process.
PSM: A Foundation for Objective Project
Management (typically called the PSM
Guide) describes organizations at the
beginning of the measurement process,
indicating who should be involved and
their responsibilities. The guide also
suggests different issues that may affect a
software project, what measurements
would help track those issues, how to
collect and analyze the measurements,
and suggests how to act on the analysis
conclusions. The guide is available from
http://www.psmsc.com.

Existing Data
Organizations often ask me for example
data of other organizations to which
they can compare their data. Unfortu-
nately, most organizations consider this
data to be extremely sensitive and rarely
release it to the public without normaliz-
ing it first. A limited amount of sample
data can be accessed from the National
Software Data and Information Reposi-
tory (NSDIR). However, this repository
has not been actively maintained for
over a year, and the data is approxi-
mately two years old. The NSDIR can
be accessed at http://nsdir.cards.com/
nsdir.

Closing
If you read an article that contains
terms you do not understand or hear
terms used that leave you confused,
please feel free to contact us. We also
welcome any editorial comments you
may wish to send us on measurement
or other software-related issues.

I also ask all measurement experts to
keep in mind as you write an article,

give a presentation, or talk with cus-
tomers that your audience is likely not
expert—terms and ideas that are intui-
tive to you may not be intuitive to your
audience. u

About the Author
Elizabeth C. L. Starrett has been a soft-
ware engineering consultant for the STSC
for five years, where she helps clients
improve their software processes. Her
most recent duties include leading the
STSC Measurement Team. She has spoken
at the Software Technology Conference,
the Data Reduction and Computer Group
Conference, and has been published in
CROSSTALK. Prior to joining the STSC, she
worked for the Air Force with its sup-
porting contractors to develop, document,
and test data analysis and test support
software for radar and the Peacekeeper
missile. She has a bachelor’s degree in
electrical engineering from Utah State
University.

Elizabeth C. L. Starrett
OO-ALC/TISEC
7278 Fourth Street
Hill AFB, Utah 84056-5205
Voice: 801-775-5555 ext. 3059

DSN 777-9730
Fax: 801-777-8069 DSN 777-8069
Internet: starretb@software.hill.af.mil

References
1. STSC Measurement Team, Measure-

ment Foundation Workshop, 1994.
2. Fleming, Quentin W., Cost/Schedule

Control Systems Criteria the Management
Guide to C/SCSC, Probus Publishing
Company, Chicago, Ill., 1992.

3. User’s Guide for Microsoft Project,
Microsoft Corporation, 1995.

4. Practical Software Measurement: A Foun-
dation for Objective Project Management,
Ver. 3.1, April 1998.

5. Jones, Capers, Patterns of Software Systems
Failure and Success, International
Thomson Computer Press, Boston,
Mass., 1996.

6. Jensen, Randall W., “Estimating the Cost
of Software Reuse,” CROSSTALK, Software
Technology Support Center, Hill Air
Force Base, Utah, May 1997.

7. Function Point Counting Practices
Manual, Dun & Bradstreet Software,
Atlanta, Ga., 1994.

Recommended Reading
Methods
1. Grady, Robert B. and Deborah L.

Caswell, Software Metrics: Establishing a
Company-Wide Program, Prentice-Hall,
1987.

2. STSC Measurement Team, Software
Metrics Capability Evaluation Guide,
Software Technology Support Center,
Hill Air Force Base, Utah, October
1995.

3. Giles, Alan, “Measurement – The Road
Less Traveled,” CROSSTALK, Software
Technology Support Center, Hill Air
Force Base, Utah, April 1996.

4. Pitts, David, “Metrics: Problem Solved?”
CROSSTALK, Software Technology Sup-
port Center, Hill Air Force Base, Utah,
December 1997.

Sample Measures and Metrics
5. Webb, David R. and David Haakenson,

“Making Metrics Work Miracles,”
CROSSTALK, Software Technology Sup-
port Center, Hill Air Force Base, Utah,
August 1995.

6. Stark, George, “Maintenance Measures,”
CROSSTALK, Software Technology Sup-
port Center, Hill Air Force Base, Utah,
July 1997.

Function Points
7. Function Point Counting Practices

Manual, Dun & Bradstreet Software,
Atlanta, Ga., 1994.

8. Heller, Roger, “An Introduction to Func-
tion Point Analysis,” CROSSTALK, Software
Technology Support Center, Hill Air
Force Base, Utah, November 1995.

9. Garmus, David, “Function Point Count-
ing in a Real-Time Environment,”
CROSSTALK, Software Technology Sup-
port Center, Hill Air Force Base, Utah,
January 1996.

PSM
10. Practical Software Measurement: A Foun-

dation for Objective Project Management,
Ver. 3.1, April 1998.

Measures and Metrics

CROSSTALK The Journal of Defense Software Engineering 27August 1998

Chief Financial Officers Act (CFOA) of 1990
The CFOA requires agencies to include performance measurement data in their annual financial statements.
(http://www.npr.gov/library/misc/cfo.html)

Government Performance and Results Act (GPRA) of 1993
The GPRA requires strategic planning and performance measurement in the executive branches of the government. Pur-
poses are to improve federal management, congressional decision-making, service delivery, program effectiveness, public
accountability, and public confidence in government. The GPRA requires agencies to develop strategic plans by September
30, 1997, for implementation in fiscal year 1999. The OMB (Office of Management and Budget) has mandated that the
plans cover six years and be updated at least every three years. Stakeholders and customers will provide input into the stra-
tegic plans. Beginning in fiscal year 1999, agencies will develop yearly performance plans and set performance goals based
on their strategic plans. Starting in March 2000, agencies will write annual performance reports, comparing actual perfor-
mance to goals established in annual performance plans.
(http://www.hhs.gov/progorg/fin/gpraindx.html)

OMB Circular A-11, Part 2: Preparation and Submission of Strategic Plans
This circular provides executive guidance for preparing and submitting agency strategic and performance plans as required
by GPRA.
(http://www.whitehouse.gov/WH/EOP/OMB/html/circulars/a011/toc97.html)

Federal Acquisition Streamlining Act (FASA) of 1994
The FASA contains specific requirements for federal agencies to “define the cost, performance, and schedule goals for
major acquisition programs” and to monitor and report annually on the degree to which these goals are being met. Agen-
cies must assess whether acquisition programs are achieving 90 percent of cost, performance, and schedule goals and, if
not, determine whether to continue the program.
(http://thomas.loc.gov/cgi-bin/query/z?c103:S.1587.ENR:)

Paperwork Reduction Act of 1995 (PRA 95)
The PRA 95 intends to improve the quality and use of federal information; to minimize the cost to the federal government
of the creation, collection, maintenance, use, dissemination, and disposition of information; and to ensure that informa-
tion technology is acquired, used, and managed to improve performance of federal agency missions.

Per PRA 95, agencies must:
• Develop and maintain a strategic information resources management plan that shall describe how information re-

sources management activities help accomplish agency missions
• Develop and maintain an ongoing process to:

1. ensure that information resources management operations and decisions are integrated with organizational plan-
ning, budget, financial management, human resources management, and program decisions;

2. in cooperation with the agency Chief Financial Officer (or comparable official), develop a full and accurate ac-
counting of information technology expenditures, related expenses, and results; and

3. establish goals for improving information resources management’s contribution to program productivity, effi-
ciency, and effectiveness, methods for measuring progress toward those goals, and clear roles and responsibilities
for achieving those goals.

(http://www.os.dhhs.gov/progorg/oirm/pl104-13.txt)

OMB Circular A-130: Management of Federal Information Resources
This circular provides executive guidance on the management of federal IM/IT resources in compliance with PRA 95.
Specific requirements include strategic IM/IT planning tying IT investments to agency mission accomplishment and cost/
benefit analysis of IT systems throughout the system life-cycle.
(http://www.whitehouse.gov/WH/EOP/OMB/html/circulars/a130/a130.html)

Appendix A – Guidance Documents

This reprint of Appendix A from the Air Force Information Technology Investment Performance Measurement Guide,
August 1997 provides official directives with regard to metrics for Air Force and government organizations.

Appendix A – Guidance Documents

28 CROSSTALK The Journal of Defense Software Engineering August 1998

Clinger-Cohen Act (formerly known as Information Technology Management Reform Act [ITMRA]) of 1996
The Clinger-Cohen Act directs that investments in IT support the mission, long-term goals and objectives, and annual
performance plan of the department. It mandates that the Secretary of Defense implement performance measurement for
all DoD IT programs, projects, and acquisitions.
(http://www.dtic.mil/dodim/cohen.html)

OMB Circular A-11, Part 3: Planning, Budgeting, and Acquisition of Fixed Assets
This circular provides executive guidance on planning, budgeting, and acquisition of fixed assets, specifically IT and
NSS-IT, in accordance with GPRA and Clinger-Cohen Act. It requires agencies to identify baseline goals for cost, sched-
ule, and performance for all proposed and ongoing acquisitions, and provides guidance on reporting compliance with
these goals to OMB.
(http://www.whitehouse.gov/WH/EOP/OMB/html/circulars/a011.toc97.html)

Executive Order 13011, Federal Information Technology
This order implements the provisions of Clinger-Cohen Act in the executive branch. Besides the specific provisions of
Clinger-Cohen Act, the order establishes the Federal CIO Council; creates the Government Information Technology Ser-
vices Board and the Information Technology Resources Board; and provides additional guidance on the roles of agency
CIOs and the use of performance measurement in evaluating IT investments.
(http://www.npr.gov/library/direct/orders/27aa.html)

Executive Office of the President, Evaluating Information Technology Investments – A Practical Guide
(OMB Information Technology Investment Guide), November 1995
Provides an analytical framework for linking IT investment decisions to strategic objectives and business plans in the federal
organizations.
(http://www.whitehouse.gov/WH/EOP/OMB/infotech/infotech.html)

GAO, Executive Guide: Effectively Implementing the Government Performance and Results Act, (GAO/
GGD-96-118), June 1996
Identifies key steps needed to implement GPRA, along with key steps that agencies need to take toward its implementation.
(http://www.gao.gov/special.pubs/gpra.htm)

DoD, Guide for Managing Information Technology (IT) as an Investment and Measuring Performance,
February 1997
The guide summarizes the DoD position on IT performance measurement and presents a framework for managing infor-
mation technology programs as investments rather than as acquisitions.
(http://www.dtic.mil/c3i/cio)

DoD, Information Technology Management (ITM): Supporting National Defense (ITM Strategic Plan),
Version 1.0, March 1997
(http://www.dtic.mil/c3i/cio)

Air Force Information Resources Management VISTAS (Air Force Information Resources Management
Strategic Plan)
(http://www.cio.hq.af.mil/docs/vistas.htm)

DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs and Major Automated
Information System Acquisition Programs
AFI 10-601, Mission Needs and Operational Requirements Guidance and Procedures.
(http://web7.whs.osd.mil/dodiss/publications/pub2.htm)

This document was prepared for Arthur Money, chief informa-
tion officer (CIO), U.S. Air Force by Andrulis Corporation.
For information concerning the project, contact

James Brown
CIO Support Directorate

AFCIC/ITIM
1250 Air Force Pentagon, Room 4A1088E
Washington, DC 20330-1260
Voice: 703-697-3492
Fax: 703-614-4471, -6346
E-mail: brownjd@af.pentagon.mil

Measures and Metrics

CROSSTALK The Journal of Defense Software Engineering 29August 1998

The Partnership Process is an
acquisition reform initiative that
has emerged from the electronic

warfare (EW) community. The new
process draws on lessons learned from
world-class companies to re-engineer
EW acquisition. These companies are
customer-driven, so the lesson for Air
Force acquisition is to respond to the
voice of the war fighter by using military
worth as the procurement criterion. Top
companies maintain open dialog with
their suppliers so the Partnership Process
emphasizes new ways to foster commu-

Partnership Process for
Electronic Warfare Acquisition

Maj. Art Huber and Lt. Col. Jay G. Santee
Office of the Assistant Secretary of the Air Force for Acquisition

and the contractor community. Our new
process is described in a comprehensive
report now available on our Web home
page (http://ewio.wpafb.af.mil) and on a
CD-ROM available free while supplies
last. Currently, our focus is on laying the
groundwork for process implementation
through a war fighter-led pilot program,
the development of an Internet-based
training course, and the release of a
quick-turn, PC-based decision aid
known as the Measures of Effectiveness
Tool. The pilot program will demon-
strate the application of partnership
principles in an area of interest desig-
nated by a major command require-
ments office. The training course will be
developed with both government and
industry audiences in mind and include
the latest reform initiatives (such as the
Lightning Bolts) within the holistic view
of the partnership. u

Maj. Art Huber
Voice: 703-588-6515 DSN 425-588-6515
Fax: 703-588-1225 DSN 425-588-1225
E-mail: HuberA@af.pentagon.mil

nication with industry. The best organi-
zations achieve their results through
continuous optimization, so we must
adopt methods to converge on best
solutions.

The new acquisition process can be
summarized by six activities (see Table 1)
that consistently put superior solutions
into the hands of our war fighters as
quickly and inexpensively as possible.

These results were achieved through
a series of intensive integrated process
team meetings that included broad rep-
resentation from Air Force organizations

Activity Innovative Theme

Quantify mission deficiencies. Base deficiency analysis on war fighter stategy-to-task.
Establish requirements. Frame the requirement in terms of airspace bought back.
Convey requirements. Structure Request for Proposal to ask for military worth, not specifications.
Select the source. Incentivize the contractor to reach beyond thresholds.
Develop the solution. Continuously optimize the trades to converge to a solution.
Evaluate the result. Link test and evaluation directly to war fighter needs.

Table 1. Measuring military worth forms the foundation for our reformed acquisition process.

Software Engineering Technology

The complete version of this article can be found on the CROSSTALK

Web site at http://www.stsc.hill.af.mil/CrossTalk/crostalk.html.

Y2K from page 10

including the Institute of Electrical and Electronics Engineers
conference in St. Louis, Mo. and the DoD Database Colloquium
in San Diego. He has also worked other software efforts within
the Air Force such as software process improvement. He has a
master’s degree in business administration from Southern Illinois
University and a bachelor’s degree in computer science from the
University of St. Thomas.

AFCA/ITYO
203 W. Losey Street, Room 1065
Scott Air Force Base, IL 62225-5224
Voice: 618-256-5697
E-mail: thomas.ashton@scott.af.mil

References
1. Voas, Jeffrey, “Certifying Year 2000 ‘Fixes,’” CROSSTALK, Software

Technology Support Center, Hill Air Force Base, Utah, January
1998.

2. De Jager, Peter, “Throwing Down the Year 2000 Gauntlet,”
CROSSTALK, Software Technology Support Center, Hill Air Force
Base, Utah, January 1998.

30 CROSSTALK The Journal of Defense Software Engineering August 1998

AFIT/CIGW
c/o AFROTC Det. 025
Arizona State University
Tempe, AZ 85287
Voice: 602-704-0135
Fax: 602-704-0135
E-mail: brian.hermann@asu.edu
Internet: http://www.public.asu.edu/~bgh14/maturity

Jim Russell, a former Air Force captain, served
as chief of Software Evaluation Methods, Edu-
cation, and Automation, Software Analysis
Division, AFOTEC at Kirtland Air Force Base,
N.M. He was responsible for evaluating Air
Force systems for software maintainability,
supportability, and maturity. He also led the

team that improved current evaluations, researched new evalua-
tion methods, coordinated software training requirements, and
headed the office’s automated software evaluation efforts.

Russell is a graduate of the Air Force Software Professional
Development Program at AFIT, and has a bachelor’s degree in
computer science from Loyola Marymount University. He is
currently working toward a master’s degree in engineering man-
agement from the University of Colorado.

Russell currently works for Honeywell, Inc. in Phoenix, Ariz.

HQ AFOTEC/SAS
8500 Gibson Boulevard SE
Kirtland AFB, NM 87117-5558

Voice: 505-846-5310 DSN 246-5310
Fax: 505-845-5145 DSN 246-5145
E-mail: sas@afotec.af.mil or jim.russell@acm.org
Internet: http://www.afotec.af.mil

References
1. Hermann, Brian G., AFOTEC Pamphlet 99-102, Vol. 6, “Soft-

ware Maturity Evaluation Guide,” March 1, 1996.
2. Goel, Amrit L. and Brian G. Hermann, “Software Maturity

Evaluation: When Is Software Ready for Operational Testing or
Fielding?” presented at the Software Technology Conference, Salt
Lake City, Utah, April 1997.

3. Foody, Michael A., “When is Software Ready For Release?”
UNIX Review, March 1995.

’98 Software Engineering Institute Symposium
Dates: Sept. 14-17, 1998
Location: Pittsburgh, Pa.
Subject: This symposium provides a forum to articu-

late currently applicable practices that software
practitioners can use to improve what they build by
improving how they build.

Sponsor: Software Engineering Institute
Contact: Voice: 412-268-5800
E-mail: customer-relations@sei.cmu.edu
Internet: http://www.sei.cmu.edu

Call for Participation: Thirteenth International
Forum on COCOMO (COnstructive COst MOde)
and Software Cost Modeling

Theme: Software Sizing
Dates: Oct. 6-8, 1998
Location: Los Angeles, Calif.
Subject: This year’s forum particularly solicits presenta-

tions on software sizing, e.g., object points or other
graphical measures, function points, UML-based or
other object-oriented measures, alternative sizing
techniques, comparison of software size measures,
and usage and calibration of size measures in the
COCOMO II submodels and other cost models.

Sponsor: University of Southern California Center for
Software Engineering and the Software Engineering
Institute

Contact: Jennifer Browning, Center for Software Engi-
neering, University of Southern California, Los
Angeles, CA 90089-0781

Voice and Fax: 213-740-5703
E-mail: browing@sunset.usc.edu

Coming Events

Measures and Metrics

Possible Uses Explanation

Maintenance Effort Use change rate and rework effort
Estimation information to estimate required

maintenance resources.
Process Improvement Track common causes of changes to

identify process changes that might
eliminate rework.

Project Management Focus management interest and
development effort on configuration
items, subsystems, or feature areas with
high numbers of total or remaining
changes.

Delivery, Ship, or Set readiness criteria, e.g., no remaining
Release Decision high-severity problems, maximum number

of remaining problems, or maximum
defect density, prior to product delivery.

Rework Management Prioritize software changes according to
severity and customer priorities.

Schedule Prediction Use recent closure and identification rate
trends to estimate when the software
product will meet test or release criteria.

Test Readiness Set readiness criteria, e.g., no remaining
high-severity problems, maximum number
of remaining problems, or maximum
defect density, prior to field testing.

READY TO DELIVER from page 15

Table 1. Software product maturity uses.

CROSSTALK The Journal of Defense Software Engineering 31August 1998

BACKTALK

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
publisher@stsc1.hill.af.mil

Managing Editor Forrest Brown
801-777-9239 DSN 777-9239
managing_editor@stsc1.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
senior_editor@stsc1.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5555 ext. 3027
graphics@stsc1.hill.af.mil

Associate Editor Lorin J. May
801-775-5555 ext. 3026
backtalk@stsc1.hill.af.mil

Editorial Assistant Bonnie May
801-775-5555 ext. 3022
customer_service@stsc1.hill.af.mil

Features Coordinator features@stsc1.hill.af.mil

Customer Service 801-777-8045
custserv@software.hill.af.mil

Fax 801-777-8069 DSN 777-8069

STSC On-Line http://www.stsc.hill.af.mil
CROSSTALK On-Line http://www.stsc.hill.af.mil/

Crosstalk/crostalk.html
ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-777-8045 DSN 777-8045
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the
attention of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense soft-
ware community. Articles must be approved by the CROSSTALK editorial board
prior to publication. Please follow the Guidelines for CROSSTALK Authors, available
upon request. We do not pay for submissions. Articles published in CROSSTALK

remain the property of the authors and may be submitted to other publications.

Reprints and Permissions: Requests for reprints must be requested from the
author or the copyright holder. Please coordinate your request with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that
are of interest to our readers. There is no fee for this service, but we must
receive the information at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the Inter-
net. World Wide Web access is at http://www.stsc.hill.af.mil.
The STSC maintains a Gopher server at gopher://gopher.stsc.hill.af.mil. Its ftp
site may be reached at ftp://ftp.stsc.hill.af.mil. The Lynx browser or gopher server
can also be reached using telnet at bbs.stsc.hill.af.mil or by modem at 801-774-
6509 or DSN 775-3602. Call 801-777-7989 or DSN 777-7989 for assistance, or
E-mail to portr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies
of back issues of CROSSTALK free of charge. If you would like a copy of the
printed edition of this or another issue of CROSSTALK, or would like to subscribe,
please contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air Lo-
gistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force soft-
ware organizations identify, evaluate, and adopt technologies that will improve
the quality of their software products, their efficiency in producing them, and
their ability to accurately predict the cost and schedule of their delivery. CROSSTALK

is assembled, printed, and distributed by the Defense Automated Printing Ser-
vice, Hill AFB, UT 84056. CROSSTALK is distributed without charge to individuals
actively involved in the defense software development process.

Got an idea for BACKTALK? Send an E-mail to backtalk@stsc1.hill.af.mil

Really Bad Metrics Advice
According to my data, roughly 122.45 percent of this journal’s 347,583,712

readers need some sharpening up on how to effectively collect and use metrics.
There is less than a 0.0345 percent chance that this column will help.

Q: I’m a manager who believes in keeping metrics simple, which is why I’ve
limited the number we collect to 62. But I also want to simplify their collection—do
you know where I can find timecard readers designed for bathroom stalls?

A: Try voice print-activated stalls with timed door locks. But first, are you
really trying to collect 62 metrics? 62? [snicker snort chortle] You’re obviously
clueless about the “KISS” principle: Keep It Stupefyingly Strenuous. You can col-
lect a lot more than 62 different metrics. The accepted rule of thumb for the
number of metrics you can reasonably work with is this: “Seven, plus or minus
the square of the number of door knobs in your home.” Remember, if some-
thing can be measured, it must be measured, and all metrics are equally critical.

Q: I feel vindicated. Now I can introduce additional metrics for every obscure
area of our process improvement model. Naturally, I plan to drop the whole wad as
an enforced edict and then make myself unavailable for a few weeks.

A: Bravo! But be sure you don’t overcomplicate things by defining every
minute detail, such as data integrity standards or what you plan to do with the
data. People learn nothing from constant handholding. Your job is to sit back
and wait for those reliable numbers to start pouring in.

Q: Great! What do you suggest I do with all that data?
A: What should you do with the data? Do? That question implies that

metrics are a means to some end. Don’t waste resources—time spent analyzing
metrics is time that could have been spent collecting even more metrics.

Q: My boss keeps asking for data on stuff I don’t think can be quantified—and
it’s often common sense stuff he could just ask us! Aren’t metrics just a big sham?

A: Shhh! You’re right, metrics are actually an extensive conspiracy—but an
extremely helpful one. When people want to make decisions based on “facts”
rather than “opinions,” you need metrics to push your personal agenda under
the guise of unassailable objectivity. Perception is everything:

Politicized emotional drivel: “Let’s try my approach. Her plan isn’t working.”
Objective insight: “A consumptive analysis of my plan projects a 84.67 percent increased

density of pro-active rationals within six months. However, her key preambulatory vindicators are creat-
ing a 24.38 percent downward sloping polymorphic trend. Plus, she wears really cheesy business suits.”

Q: But what if I don’t know how to collect and project those kind of numbers?
A: Then you’re in the same boat as the people who want to see your metrics.

This is the whole key to effectively utilizing metrics: They don’t exist to uncover
reality—they’re for creating whatever reality suits you.

Q: I lead a project with a beautifully simple metrics program that consists of
two critical measurements: How many days past the deadline we are, and how
many dollars over budget. But lately I’ve had the nagging feeling that I’m not get-
ting enough mileage from these metrics. Is there any way I can use metrics to pro-
mote dishonesty, infighting, and poor work habits?

A: Certainly. Once you’ve worn down employees with coma-inducing quan-
tities of metrics that have no perceivable link to any business objectives, pick one
favorite, such as lines of code, then base penalties and rewards on it. Resulting
competition will discourage teamwork and will lead to ineffective work and
“creative” reporting practices among some employees. Their skewed metrics will
give you great overall numbers, which you can then use to dazzle your superiors.

Q: “Great” numbers draw scrutiny. How about “barely exceeding expectations”?
A: Fortunately, herpetological analysis indicates a 98.65 percent propensity

toward established parameters, regardless of iambic deviance from ergonomics.
Q: Huh?
A: If you tell your employees what final numbers you want to see, no matter

how absurd, they’ll manage to deliver them without even breaking a sweat.
Q: And you don’t think anyone will audit my metrics for accuracy?
A: You can bet 97.387 percent of the farm on it. – Lorin May

